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ABSTRACT

Based on a modified output regulator problem, a design oriented
methodology is presented for the construction of output feedback compensa-
tors retaining 4(1<4£=n) optimal eigenvectors from a reference state
feedback regulator. Viewing &4 as a design parameter, it is known that in
the case £>r this requires a dynamic compensator of dimension £ - r whose
parameters are determined in function of the solution of an associated
output feedback pole-placement problem. Using an iterative dyadic pole-
placement procedure, an algorithm is given which determines the solution
of this pole-placement problem without a priori assumptions on the compen-
sator dimension. The methodology is also extended to the class of stabiliz-
able systems and the required compensator shown to possec- a separation
property. Finally the design methodology is illustrated by three nontrivial

examples.
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INTRODUCTION

In the design of linear quadratic regulators for time-invariant
systems, the inaccessibility of state variables precludes the implementation
of optimal state feedback control laws. Two approaches to the resolution
of this difficulty are the reconstruction of unmeasured states by reduced
order observers and the reformulation of the optimization problem as an
output feedback quadratic regulator problem. The introduction of reduced
order observers allows the retention of the optimal state feedback control
law, but may often result in the use of a compensator of much higher dimen-
sion than is actually needed to satisfactorily control the system. The
reformulation of the problem under output feedback suffers a more severe dis-
advantage, Whereas there is a wealth of literature available on the state
feedback regulator and associated state reconstruction problems, or estima-
tion and filtering problems in the presence of noise, very little is known
about the existence and properties of solutions to the output feedback reg-
ulator problem, It is therefore of interest to develop implementable
regulators which retain some measure of optimality provided by the state
feedback regulator problem, without requiring the use of compensators of
high dimension,

One solution to this problem is to design compensators for output
feedback regulators which retain as many optimal eigenvectors of the corre-
sponding state feedback regulators as possible, Such regulators have the
properties of achiaving the optimal cost in the subspace spanned by the
retained eigenvectors, and of providing an easily computed measure of the

cost degradation in the remaining state space. It is known that retention

-t ————— e
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of r+p optimal eigenvectors, where r is the rank of the output matrix,

requires the construction of a dynamic compensator of dimension p, and that
the compensator parameters may be determined in function of the solution of
an associated output feedback pole-placement problem [l].

Following a review of a design oriented methodology for the con-
struction of output feedback regulators which retain r+p optimal eigen-
vectors (p=20), an algerithm will be presented which solves the associated
pole-placement problem 2nd determines the dimension p of the required com-

pensator without a priori assumptions. In the event the system is stabili-

zable by static output feedback, rather than construct a dynamic compensator,
it may be preferable to relax the requirement of retention of r+p optimal
eigenvectors. The problem of retention of fewer than r optimal eigenvectors
will therefore be considered and shown to also give rise to an output feed-
back pole-placement problem, Finally it will be shown that the design
methodology may be extended to the class of stabilizable systems,

In chapter one dyadic solutions to the static output feedback
pole-placement problem are reviewed. The second chapter presents the
methodology for the design of suboptimal linear quadratic regulators which
retain 4(1=4%<n) optimal eigenvectors from the state feedback regulator,
Based on the methodology proposed in [2] for solving the general output
feedback pole-placement problem, an algorithm is obtained in chapter three
which solves the pole-placement problem associated with the design of sub-
optimal regulators. 1In the last chapter three nontrivial examples illustrate

the design methodology.




CHAPIER 1

DYADIC SOLUTIONS TO THE OUTPUT FEEDBACK POLE-PLACEMENT PROBLEM

Since the problem of eigenvalue assignment by state feedback was
resolved [3] the related problem of eigenvalue assignment by output feed-
back has been the subject of extensive research., Aside from numerical methods,
approaches to the problem may be characterized as giving rise to either dyadic
or full rank feedback matrices.

In the dyadic approach the nonlinear equations which describe the
complete solution to the problem are rendered linear by arbitrarily fixing
certain otherwise free parameters, and the feedback gain matrix is obtained
as a sum of dyadic products. Dyadic solutions have been obtained for systems
represented in state space [4], [5], [6], [7] and for systems described by
transfer functions [8], [9], [10], [11].

Other approaches to the problem attempt to utilize the freedom
discarded in the dyadic approach, typically to assign eigenvectors as well
as eigenvalues, and while usually resulting in full rank feedback matrices,
tend to give rise to solutions which are numerically difficult. Extensive
results have been obtained using geometric approaches [12], [13], [14].

Other approaches include the generalized root locus [15], [16], [17], the

use of generalized inverses [18], [19] and the use of Kronecker products [20].
Because of the difficulty of obtaining explicit solutions to the
output feedback pole placement problem, many numerical procedures have been
proposed, In view of the fact that in general only m+r-1 eigenvalues may be
arbitrarily assigned while nothing can be said about the resulting locations

of the remaining eigenvalues, it has been suggested that the problem be

e o et - o e



reformulated as an optimization problem to minimize the deviations of all n
eigenvalues from their desired locations [21], [22], Other authors have
éonsidered the problem of requiring the closed loop eigenvalues to lie in
prescribed regions of the complex plane [23], [24]. This leads naturally to
recasting the problem as an output feedback linear quadratic regulator prob-
lem [24], but theoretical results are lacking. In chapter 2 one approach
to designing suboptimal linear quadratic regulators will be seen to lead
directly back to the output feedback pole-placement problem.

In this chapter dyadic solutions to the output feedback pole-
placement problem are discussed in detail as they will be used in chapter 3
to solve the pole-placement problem associated with the design of suboptimal
regulators,

Let the triple (A,B,C) represent the linear time-invariant system

nxn

X=Ax+Bu , y=Cx , A€ER pxn

, BER rxn

» CER (1.1)

where B and C are assumed to be of full rank. Then except for certain
singular systems it is known that max(n,m+r-l) eigenvalues may be assigned
Y"almost' arbitrarily by output feedback of the form u =Ky; KERmxr. The
proof of this is constructive and relies on the fact that uncontrgllable
and/or unobservable eigenvalues of a system are invariant under output feed-
back. The idea is that, after an initial feedback placing some eigenvalues
at their desired locations, the system may be collapsed to a single input or
output system having min(m,r)-1 of these eigenvalues uncontrollable or un-

observable. The remaining min(max(m,r), n-min(m,r) +1) desired eigenvalues

may then be assigned by a further feedback. Formulas for the computation of

ve e = e




the required gains are given in the proof of Theorem 1,2 below, and Theorem

1.3 gives the final desired gain as a sum of dyadic products,

i
The following definitions make precise the use of the word "almost'". i
i

Definition 1.1 [26]: Let {?i(;)}izl be a finite set of real valued poly-

nomials taking their arguments in a parameter space Rn. Then the set of 5
common zeros V= {_EGRn : (Pi(§) =0, 1=i=N} is called a proper variety pro-

vided V #R". =
Definition 1.2 f26]: A property is said to hold for almost all points in a

parameter space R® provided the set of points at which the property fails to

hold is the union of a finite number of proper varieties. a

Also are needed:

Definition 1.3 [13]: A set 1"‘ of £ complex numbers is said to be a symmetric

set provided A € [, if and only if A*€ I"z. o

Definition l.4: The matrix A is said to have { assignable eigenvalues if for

almost all symmetric sets FL there exists an output feedback matrix K such
that FLE O (A +BKC).

A preliminary result will permit the avoidance of any discussion
of the complications which arise if the matrix A has repeated eigenvalues.

Theorem 1.1 [27]: 1If (A,B,C) is a controllable and observable triple then

for almost all matrices K, the eigenvalues of A +BKC will be distinct,

0

Proof: See [27].
The proof of the next theorem provides formulas for computing the
factors of dyadic output feedbacks. A result that will be needed in the proof

is contained in Lemma 1.1. To simplify the notation, let |a| denote the determinant

of A.

Lemma 1,1 [28]: If x,yGRnxl are column vectors then IIn+xyT| = (1+yTx).




Proof: Let VeRnx(n-l) have as columns any basis for the null space of yT.
Then (In+ij)V=V and it follows that 1 is an eigenvalue of In+xyT with
algebraic multiplicity n -1, Letting A denote the remaining eigenvalue of
In+xyT then

|1n+xyT| =, trace(In+xyT)=k+(n-l) (1.2)

and since trace(In+xyT) =n +<x,y> there follows

|In+xyT| = trace(I_+xy") - (a-1) = (L +y'x) (1.3) ©

Theorem 1.2 [4],[6]: 1If (A,B,C) is a controllable and observable triple

with C having full rank r and A having distinct eigenvalues, then for any
symmetric set [, there exists a feedback matrix K such that r eigenvalues
of A+BKC are arbitrarily close to the elements of the set l"r.

Proof: Let I‘ra {)‘i};=1 be a symmetric set of complex numbers to be assigned
to the spectrum of A+BKC. By Theorem 1.1 it may be assumed without loss of

generality that the eigenvalues of A are distinct. The theorem is proved by

finding a vector f such that the pair (A,Bf) is controllable and then solving
the pole-placement problem for the single input system (A,Bf,C). The final
feedback gain will be a dyadic product K = fg.

|
Let TER" ™ transform the matrix A to Jordan form so that 1

'1 .
B=[T bl cees

1

-1
AT-dg[Gl cee dn] , T

T T lbm] (1.4) |

and note that by the assumption of controllability, each row of T-lB has at A

least one nonzero entry. Select £eR®* ! such that no entry of T IBEf is

zero, This is always possible, as the set of vectors f such that some entry




of T-le is zero is the union of m proper (linear) varieties. With b =Bf

the single input system (A,b,C) is then controllable,

Let the characteristic equation of A be

: l n i{
- NSER-AH S a5

and by Leverrier's algorithm write

n-1

oty el Tz g ARl g LB, 4t g
o 170 Fi » Fi 7320 n-j .

. i
-

By Lemma 1.1 the closed loop characteristic equation under feedback u =gy,

g€ Rl x r’ may be written

p (M) = IAI-@ +bge)| = [A1 -becar-a) "M Az-al

= (1 - gCAI-8) "B)p (M) 1.7

n-1 i

= - P
Po(A) -8C y2g 5o & "PA,5h

Sunst $ aeeEl gk B apewed e

n-i-1

Changing the summation indices to k=i-j, L=1i the equation becomes

P.(A) =p () -8CQRs(A) (1.8)
where
[ ] [ n-1]
an-l *ee o0 al %
1 . : .
Q=[b:4b: ... A% ], rR= o s A
0 Loan 1
— L] (1.9)




Defining P=[p,(A)) ++. P (A )] €R" *LandSa[s(h) I ...t s )] €R™*T

and constraining pc(ki) =0 for i=1,..., r results in the square linear

system of equations
gCQRS = P (1.10)

which will always have a solution g except for those choices of Fr for which

lCQRSl==0. If this determinant is zero and the equations are inconsistent

then an arbitrarily small perturbation of the Xi will result in a consistent

set of equations, but it should be noted that in practice this will result

in arbitrarily large gains in some or all of the entries of g. The theorem

is proved on writing the final feedback as K= fg. o
By duality there follows immediately from Theorem 1.2:

Corollary 1.2.1 [4]: 1f (A,B,C) is a controllable and observable triple and

B and C are of full rank, then for any symmetric set FP of p=max(m,r) com-

plex numbers there exists A matrix K such that the eigenvalues of A +BKC

are arbitrarily close to the elements of Fp. a
It should be noted that the selection of f in the proof of the

theorem was completely arbitrary and represents precisely that loss of

freedom in the specification of a dyadic feedback K which results in a

linear system of equations. Also the requirement of controllability of

the pair (A,B) may be relaxed to the requirement that (CQRS) be invertible,

but conditions on the matrices A, B, f under which this will be true are not

known. That the matrix may fail to be invertible for some uncontrollable

systems will lead to the failure of Theorem 1,3 to hold for all triples

(A,B,C). Finally it is remarked that the method of the proof of Theorem 1.3

T e——
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fails in the case l"r contains repeated eigenvalues. A straightforward
modification of the equations to handle this case is given in [4] and may
be of interest, for example, in solving minimum time problems for discrete
systems,

In general,for any fixed £ the equation ICQRSI =0 defines a prop-
er variety of eigenvalues ' which are not assignable by any finite output

feedback. The following example illustrates this point.

! S

3 Example 1.1 [12]: Let (A,B,C) be given by
¢ — o i
= 0o 1 0 O 1
‘ 0 o0 1 3
4 o 0|, B=}|1 0}, C= (1.11) 1
3 0 1 o0 4
k. 1 0 0 1 :

— s> AN QGeus ey cGony twes Gme e g

The open loop characteristic equation is P, ¢9) =h3+}\2 -1l. For any given

£ = (fl,fz)T the gain K = fg is defined by (1.10):

- —t

2
£ £, -£ 1 1 of{Ar A
o o 1 2 172 1 M2 z
(8,,8,) . 0o f£ 0 L 1[{r, A, ]| =
2710 1 o 2 1 M |
‘ £, 0 0 0 1{{1 1 |
%
3,.,2 3,..2
AI+A =1 A +A, - 1) (1.12) |

and the equation
2
0= lcqrs| = (hy =MD (E] (A, +Ag +2, +1) -
. +h +1) - £.£) 1.13
2+, ) (1.13)

defines those symmetric sets O‘l’}‘Z) which are not assignable, though as

noted above, the equations may be modified to handle the case >‘1 =Ape a




The main theorem may now be given.

Theorem 1.3 [5],[7]: For almost all controllable and observable triples

(A,B,C) and for any symmetric set Fp of p=min(n,m+r-1) complex numbers,
there exists a matrix K such that the eigenvalues of A+BKC are arbitrarily
close to the elements of I"p.

This result was obtained in [5], [7] and [12] and provides the best
known bound on the number of eigenvalues assignable by output feedback. For
a geometric proof which constructs a full rank feedback the interested
reader is referred to [12].

Proof: Let I'p = D‘i}iil be a symmetric set of p=min(n,m+r-1) complex numbers
to be assigned to the spectrum of A+BKC., By Theorem 1,1 it may be assumed
that the eigenvalues of A are distinct. The theorem will be proved by
constructing a rank 2 gain K=flgl+f232 where fl will be arbitrary, g chosen
to place at least r-1 eigenvalues, g, to render those r-l1 eigenvalues un-
observable, and f2 to place the remaining min(n-r+ 1,m) eigenvalues.

- n 1,.. 2 .
With A, b, ¢, {aj]:}i:]_ ’ {ai}i=l ’ po(k), po()\) to be defined

below let:
- « O . . ~ 'lTTT
Ql-[bZAb....IAnlb] Q2=[cT.ATcT.....(An)c]
- 1 17 [ -] . n-1 n-1 |
1 an-l LI I N al ;‘ k1 ® e 0 kr
T : ah-1 1 0 : .
Ry = - R=l o -, - S Tl .
1 e T M e
2 2
| 1| L_al ceeenst @ 1 ... 1




Py

rJ - .,-,

. -,’4.“4

> o

B =[pL (k) e B R ]

n-1
)'min(n,m-l-r-l) tenee )'min(n,nrl-r-l) 1

2 2 T
PZ = I:po(}‘r) en Po()‘min(n,mﬂ:-l))]

Rle be any vector such

As in the proof of Theorem 1.2 let f1€
that the pair (A,b), béBfl, is controllable, and denote the open loop

characteristic polynomial of A by

1, . g.1,1 _1_
P, = jEga A s =1 (1.15)

r

Then by Theorem 1.2, the solution gleRlx of the equation

g,[C QR;S,] = P, (1.16)

will assign the eigenvalues {}‘i}izl to the spectrum of A=A+Bflglc, subject
to a possible perturbation of the numbers >‘1’. to ensure the consistency of the
equations.

Recalling that unobservable eigenvalues are invariant under output
feedback let V1€Rnx(r-1) and V2 6Rnx(n-r+1) have as columns the eigen-
vectors of & corresponding respectively to U‘i};;}. and the remaining eigen-
values of A. Then if gZCV1=O, the single output system (4,B,c), cégzc,
will have r-1 unobservable eigenvalues {}‘i}i;i « The number of nonzero
entries of the vector g,CV, will be the number of eigenvalues of A subject

to influence under further feedback. A solution to gZCV2 =0 always exists

as it requires finding an r-vector orthogonal to r-l other r-vectors, how-

ever conditions under which at least min(m,n-r+l) entries of gZCV2 will be
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nonzero are not known.

Let the characteristic polynomial of A be
AN a =1 (1.17)
Applying the dual of Theorem 1.2, the solution f2 of the equations

[S,R,Q,Blf, = P, (1.18)

min(n,m+r-1)

i=r to the spectrum of

will assign the remaining eigenvalues U\i}
§+Bf2g20, provided the equations are consistent. The final dyadic feed-
back will then be K=f1g1+f2g2. If the equations are inconsistent, then
a perturbation of the eigenvalues to be assigned may possibly fail to make

[SZRZQZB] invertible, since the factor RzQzB cannot be guaranteed to be of

full rank, the triple (A,B,C) not being observable,

m}

Since rank-deficient compensators have poor disturbance rejection

properties in applications, the procedure of this proof may be iterated to
obtain full rank feedback matrices as sums of min(m,r) dyadic products [2],
This modification provides the basis for the algorithm given in section
3.1 and will be discussed in detail there.

The following example illustrates the possibility of a system
structurally failing to allow the assignment of min(n,mtr-1) eigenvalues.

x2 and bl’bZ’cl’cz ER?' x1 and consider the

Example 1.2: Let Ap,A, GRZ

A, 0 b, 0 cf 0
, , T (1.19)
0 A2 0 b2 0 c2

system

eyt




.- ..
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b

-
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2x2 .
Under output feedback u =Ky, KER *< the closed loop system is
T T
Ap+kypPie k12P1%2

. _ . (1.20)
ky1bpel Ay tkyoboc,

The result of Theorem 1,3 would predict that min{(n,m+r-1) =3 eigenvalues
T _ T_
2-—0 or b,c, =

271

system is block triangular and only max(m,r) =2 eigenvalues may be assigned,

may be assigned, However if either blc 0 the closed loop
one to each diagonal block by the choice of kll’ k22' Q
An alternmate characterization of the vectors fi’gi in the proof of
Theorem 1.3 is available. Rather than requiring pc(hi)==0, i=1,...,max(m,x)
in the proof of Theorem 1.2, the desired closed loop characteristic equation
may be constrained to be of the form
max(m,r)

P, = p (M, (M), p )= T (A-Ay) (1.21)
giving rise to a system of equations which determine not only the feedback
gain but also the remaining spectrum of the closed loop system as the roots
of pz(x) [8]. Since this will require the computation of the Markov param-
eters CAiB, a pole-placement procedure incorporating this approach will be
referred to in this thesis as a frequency domain solution, whereas the pro-
cedure contained in the proofs of Theorems 1,2 and 1.3 will be referred to
as a state space solution, By duality it suffices to define a frequency
domain solution by indicating formulas for pole-placement in single-input
systems and for rendering poles uncontrollable,

Let the system (A,B,C) have transfer function
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n
C(XI-A)-IB =NQA) / dQ) , dN) = 150 aihi ,a =1 (1.22)

and assume that the eigenvalues of A are distinct. Using Leverrier's
algorithm the transfer function may be written in terms of the Markov .

i
parameters CA B:

nol 4 i-j.n-i-1
N(A\) = C adj(AI-A)B = C(i=0 320 an-jA A )B
B nil (n}-:k-l . CA(n'k'l)'jB)}‘k (1.23)

A k=0 ‘j=0 n-j .
s n-k-1 n-k-1-j :
. = =K=1- .
Defining Nk = PR an_jCA B equation (1.22) becomes :
: n-1 . 4
. -1 > i :
; C(AI-A) B = (i=0 Nih Yy / d@) (1.24) :
r
. The following lemma is needed in obtaining single input systems '
§
with prescribed uncontrollable eigenvalues. i
¥
Lemma 1.2 [1l1]: 1If )‘o is a root of d(\) then rank N(ho)il. :

£ Proof: Let T transform A to the Jordan form T-lAT=dg()\1,...,hn). Then

N(A) =C adj(\I-4)B =CT adj(d8(A-Ayseaeshmh )T B

(1.25)
. -1
=CT dg(igl()s-}\i),...,i;n(k-)\i))'l‘ B
1f )\°=)\k for some k, 1=k <n,then N(ko) becomes
- ) -1
; N(?so) =CT dg(O,...,O,igkO\ hi),o,...,O)T B (1.26)
| and so rank N(ko) =1, a

Recall that a pole of a single input system is uncontrollable if

7 i o P e O PR A Tt R~ TR ' e A LR T8 e AL T e 5 AT

the numerator of the transfer function is zero evaluated at that pole, and

let f define the single input system (A,Bf,C) with transfer function
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n-1 i rl nxl
H(M = NO)E/d@A) , NO) = Z NAT, N, = ¢ [€R (1.27)
n_.
rL

To render ﬁ-l poles {ki}?;i uncontrollable it suffices to satisfy N(Xi)f==0,
i=1,...,m-1, If the matrixbiGRm-lxm is taken to have as its ith row the
linearly independent row of N(xi) then f may be obtained as the solution of
Mf=0 [2], [11]. (1f N(hi) =0 then hi is already uncontrollable and the
ith row may be taken all zeros).

Let {hi}§=1 be the r poles to be assigned by the feedback gGEG'xr
of Figure 1.1. By summing at nodes 1 and 2 in the figure the closed loop

transfer function may be written
H. O = (T-HOe) HO) = BQ) / (L-810)) (1.28)

from which the closed loop polynomial is given by

p.(A) = dQ) - &NQ) (1.29)
Node 1 Node 2
5 HQA) D i
r + y ;

g |K—=

Figure 1.1. Block diagram of transfer function given in
(1.28).




,&‘

r r 3
n - = =z 1 = ;
i=1(k ki) 120 dix s dr i (1.31) i
l,
and factor ;
r i nir i “;
= = Z = !
P (M) =P (WP, (M) = By d A GE BT, b =1 (1.32) 4
Then equation (1.29) becomes ;
r n-r n . n-1 j
z N> Lotz aaly- ¢z i :
(420 42 & RAT) = ((2g 30D = (g 890D (1.33) E
This may be rewritten ‘
S P T~ et T SRR - S O S
= -z -
120 WM (L A (e BN = LRy a N - By A (1.34)
Equating coefficients of A gives the nth order linear system of equations
[81:

16

From this equation there arise two possibilities for solving for g. Con-
straining pc(X)i=0, i=1,...,r, gives the system of equations (1.8), (l.9)

in the proof of Theorem 1.2:

[Py (hp)seeesP AT = BINADE T wue I NG E]

. n-1 n-T]
nl(n-l)"" oy A “"hr
=g : : : . (1.30)
nr (n-l). L BN nrl Al o weoe Ar
AR ROUUS

The second method solves a higher order system of equations but

N T Y G S R

also obtains the coefficients of the polynomial whose roots are the remain-

ing n-r poles of the closed loop system. Let




-y

nll ® 0 0 8 0 0 0 00 00 0 RSSO0 B ORles s nlr—
nrl .......‘.......................nrr
[gl’ooo,gr:ho,---,hn_r_ll x do dl es s e e dr-l 1 ®esss e s 000 0
o 4y -, dep L, 0
. .. - ‘1 .
0 ® 600000 00 d d ® 0o e d l
__ 01 r-1 ]
(1.35)

= (ao’.o-,an_l) - <o’...’0’do’dl’...’dr-l)

These equations determine the gain g, and the remaining spectrum of A +BfgC
as the roots of pz(x). As in Theorem 1.2 it may arise that the coefficient
matrix in (1.35) is singular. If the system of equations is incomsistent
then an arbitrarily small perturbation of the Xi will render the coefficient
matrix invertible by altering the lower (n-r)xn block.

To illustrate frequency domain and state space solutions of the
pole-placement problem reconsider Example 1.1,

Example 1.1 (continued) f[12]: Let A,B,C be given by (l.1l), and assume the

desired closed loop spectrum is (-2,-l+1j). Since m+r-1=3, arbitrary
pole-placement is possible.,

A dyadic feedback K=f + £ g, is computed in two stages. At

1817 %52
the first stage two poles are placed and at the second stage one of these

poles is rendered invariant to further feedback and two additional poles

are assigned, There are several possibilities for computing f £

1’g1’ 2,82'
At the first stage f1 may be chosen arbitrarily and 81 coriputed from (L.16)

to place r =2 poles, or g, may be selected arbitrarily and £, computed from

1

Teren s e IUa e S L e e A o e -

N mamibis

SRR e soom vttt Kt mothan 1 o

02 oo cenim ki i
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(1.18) to place m=2 poles. At the second stage there are also two choices, L
Either f2 may be chosen to define a single-input system with m-1 uncontrol-
lable poles and g, computed from (l1.16) to place r additional poles, or g,
may be chosen to define a single-output system with r-1 unobservable poles

and £, computed from (1.18) to place m additional poles. In this example,

2
for both the state space and the frequency domain solutioms, r poles will
be assigned at the first stage. At the second stage g, will be chosen to

. render r-1 poles unobservable and then f2 will be computed to place the

N remaining m poles at their desired locations. Because the complex pair
-1+1j may not be split, A =-2 must be assigned at the first stage.

The state space solution is as follows. Arbitrarily select

s ' 3 fl = (l,O)T and let the spectrum to be assigned by g, be (-2,0). With

-

pé(h) =)\3+)\2 -1, )\1 =-2, }\2 =0 equation (1.16) becomes

g
o 1 of{1 o ofjlo 1 1{]|-2 o
o 1L ollo o 1 1 1
3 (1.36)
= (-5,-1)

which has solution g = (~1,-3). The resultant spectrum is 0(1:.) = (0,-2,-2)

and

-1 0 1

A

A=]1 -3 -1 ’ pg(X)=x3+4>~2+4h (1.37)

6 1 0
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The repeated eigenvalue A\ =-2 has only one eigenvector V1= (-1,-2,1)T.
To render one eigenvalue at -2 unobservable the equation gZCV1=0 is

solved for g = (2,1). Using p(z)(-li- 1j) =<2+ 2j equation (1.18) becomes

— i i i

-2 -1+ 141 O oO0fO0 1 2 0 o0 !

23 -1-3 1J]l4 1 off 1 -1 -1 1 0]f '

2
4 4 1)|-2 2 2 0 1 ;
X t
! -2-2] :
1’ = (1.38)
_ =242 !
o ;
- 11
» Premultipling by i i to obtain a set of real equations, the solution is
o ik
P £,=(4,-2)". The final feedback is then

_ _[7 1
K=£3g +fg = [_4 _2] (1.39)

and the spectrum of A+BKC is (-2,-1+1j).
The frequency domain solution is as follows. Again selecting

f1= (1,0)T the transfer function for the single input system (A,Bfl,C) is

1 A+l
HQ\) = (1.40)
A 432-1 2 o+

Placing poles at -2,0, (1.31) becomes p, (A) =A°+2A and (1.35) gives

[gl : h] 0 1 1] =(-1,0,1)-(0: 0,2) (1.41)
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The solution is gL = (-1,-3) and h=2, The spectrum of A is therefore (0,-2)
together with the root -2 of p,(A) =A+h. Since the spectrum of A is known,
its characteristic equation is also known and the transfer function for the

system (A,B,C) may be computed from the Markov parameters (1.23):

A+1 ).2+4x+3

CAL-A)B = NA)/AQN) = — - (1.42)
VMraZiea |2

AT+ -A
To render the pole at -2 unobservable, g, is computed as the solution

gy = (2,1) of g,N(-2) =0:

gN(-2) = g, =0 (1.43)

The transfer function of the single-output system (K,B,gzc) is then

1

—L A2+ +2,202 + 70 +6) (1.44)
AT +H4NT + 4N

HQA) =

To place two poles at -1+1j, (1.31) becomes pz(}\) =).2+2}\+2, and the

dual of (1.35) gives

2 2 2 f2 0 0
3 7 2 ceee|l = 4] - 2 (1.45)
1 6 1 h 4 2

The solution is f2 = (4,-2)T, h=2. The final feedback gain K is given by
(1.39), and the spectrum of A +BKC is -1+1j together with the root -2 of

P, (A) =A+h. a
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CHAPTER 2

DESIGN OF SUBOPTIMAL LINEAR QUADRATIC REGUIATORS

This chapter considers the problem of designing suboptimal linear
quadratic regulators having the property of retaining any number £
(1= 4=n) of eigenvectors at their optimal locations as defined by a
reference state feedback regulator problem. The system under consideration

will be taken to be

% =Ax+Bu , y=Cx, AER ™, BER™™®, cer™™ (2.1)

and will be assumed to be controllable and observable,

In the case 4=r the solution will be seen to be given by a static
output feedback compensator, while in the case £>r a dynamic compensator
will be required. In the complete methodology 4 is viewed as a free para-
meter to be specified during the design procedure and not fixed a priori.
When L#r there exists freedom in the design, which is translated into the
choice of feedback gains if £ <r and into the choice of parameters of the
dynamic compensator if 4>r. In both cases this freedom is used to shape
the complementary spectral characteristics of the closed loop system by
solving an associated output feedback pole-placement problem, a solution to

which will be given in section 3,1,

2.1l. Review of Necessary Conditioms

In this section solutions to three related linear quadratic
regulator problems are presented and their properties reviewed.

Let Q ER™™, RER™™ where Q=QY 20 and R=R" >0.

.




For reference purposes the state feedback linear quadratic regu-
lator problem is defined as:

N
minimize ®

u =-Kx,K€ Rmxn } -213 J' (xTQx+uTRu)dt g

% = Ax+Bu 1 o J

Defining the state feedback Ricatti equation as
alv+ma -vBR IBTM4Q = 0 (2.1.2)

it is well known that if (A,V(;) is a detectable pair then the minimizing

control law is given by u = -Kx where K=R_]'BTM and M is the unique

symmetric positive definite solution of (2.1.2). If (A,VQ) is not a detect-

able pair and none of the eigenvalues of the matrix

A -sr"1pT

-Q -A

lie on the imaginary axis, then (2.1.2) has at least two positive semi-*
definite solutions M. More generally, if E has p unobservable eigenvalues
with positive real parts then there are at least 2p such solutions, in-
cluding the optimal solution Mo and the unique stabilizing solution Ms, and

they satisfy [29]
M=
0<M_SMEM (2.1.4)

In particular, for the minimum energy problem (Q =0, R=1I) the minimizing
solution is Mo=0, and if A is unstable (2.1,2) has a unique stabilizing
solution Mg with the property of "reflecting'" unstable eigenvalues of A

about the imaginary axis.
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The output feedback regulator problem is formulated under the
assumption that the initial state X is a zero mean random variable with
covariance matrix Qo in order to eliminate the dependence of the cost

functional upon the initial state, The problem is to

minimize mxr 1 2 T T
u=-Ky,KER E {3 [ (x"Qx+u’Ru)dt (2.1.5)
% =Ax+Bu o
y =Cx
Introducing the symmetric positive definite matrices LERnxn, MERM™
defined by
- T 1 _ 1. T T
L J:E(xx yde zngxo- 2 Jo(x Qx +u Ru)dt (2.1.6)

the necessary conditions for a solution to the problem are the coupled

Ricatti equations:

FM+MF +Q +C K'RKC = 0 (2.1.7a)
T

FL+LF +Q = 0 (2.1.7b)

g =R 180acT e ! 2.1.7¢)

F=A - BKC 2.1.7d)

Little is known regarding the existence and properties of
solutions of these equations beyond the following sufficiency conditionm.

Theorem 2.1.1 {30]: 1If there exists an output feedback matrix KERTT such

that A -BKC is a stable matrix, then there exists a solution to equations

-
(2.1.7) for all Q;>0, R>0, and Q20 provided the pair (4,VQ) is

observable, ]

o e e i
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Thus if the triple (A,B,C) may be stabilized by output feedback,
then the output feedback regulator problem has a solution. Furthermore,
using the stabilizing matrix K, as an initial guess for the solution of

(2.1.7), the following numerical iteration scheme has been proposed [25].

' T.T )

& FyMy g+, F, +Q+CKRK,C=0, F; =A - BK,C (2.1.8a)

3 -1 T T.-1

. Ki.+l R BIM1+1L1+1C (CL1+1C ) (2.1.8b)

: Fypaliss +LiaaFian *Q = O (2.1.8¢)
i+l FhiFin R -1

Given K (2.1.8a) is solved for M which determines Ki+1:=Ki+l(Li+1)

i? i+l
by (2.1.8b). Solving equation (2.1.8c) for Li+1 gives Ki+1 numerically

and completes the ith iteration, In practice this scheme frequently

converges but there is no general convergence proof.

For later purposes it is noted here that if an arbitrary output
,£: feedback K 1is applied to the triple (A,B,C) the associated coét is %trace(MQO)
where M=M(K) is the solution of (2.1.7a), XIf M, L is a solution of
- (2.1.7a-d) then of course this is the optiﬁal cost.

In order to obtain further insight into the properties of the
output feedback regulator problem, the problem has recently been reformu-

lated so as to eliminate the dependence of M and L on the covariance matrix

F Q, {31]. Noting that equation (2.1.7a) may be rewritten as
ATM+MA +1BR™IBM +Q+W(M,K) =0 (2.1.9a)
WOM,K) = (R BIM-KC) TR (R B TM-KC) (2.1.9b)

* k%
| it may be shown that if K* minimizes W(M,K) then the solution M =M (K )
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of (2.1.9a) is the optimal solution of the output regulator problem,
independent of the distribution of initial states. However, a K* that
makes W(M,K) minima' in the positive semi-definite sense exists only if
either C is invertible, or if the pair (A,C) is completely aggregable
(CA'-AOC for some Ao) and the weighting matrix Q may be decomposed as

Q -Cquc. Both of these cases are equivalent to the state feedback reg-
ulator problem , under a transformation of basis in the first case, and
under a reduction of state in the later, It was therefore suggested in
[31] that K be chosen to minimize the. term R-lBIM-KC in W(M,K) with respect
to the matrix norm induced by the inner product (x,Ly) in order to make the
contribution of W(M,K) in (2.1.9a) small. For a given L the minimizing K

is given by
= R BhwcT ety ™t (2.1.10)
and substitution in equation (2.1.9a) yields the equations:
aTv+ma -vBR™ 1B +Q + (1-p) BB TM(z-P) = 0 (2.1.11a)
p = Lctcrehy " Le (2.1.11b)

Thus for a given L the necessary conditions for this modified output feed-
back regulator problem are the existence of a positive definite matrix M
satisfying equations (2.1.11). The corresponding feedback gain is given
by (2.1.10).

Relating this modified problem to the output feedback regulator

problem defined above it is known that if for some (Q,R) for which (A:¢63

is observable there exists an L >0 such that (2.1.11) has a positive
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definite solution M, then for any Q20, R>0, Qo>0, (A,\B) observable, the
necessary conditions (2.1.7) for the output feedback problem have a solution
L>0, M>0 [31].

The properties of solutions of the modified regulator problem will

be discussed in the next section.

2.2. Retention of Optimal Invariant Subspaces by Static Output Feedback
Compensation

Since the solution of the output feedback regulator problem does

not have an analytic characterization it is of interest to obtain sub-
optimal output regulators associated with the state regulator. This section
gives a solution to the problem of determining output feedback gains which
assign 4 dimensional invariant subspaces (l=.4=r) of the optimal state
regulator. Consideration is restricted to those output feedbacks which

may be obtained as 'generalized projections" of state feedbacks:

KO = KSP1+P2 (2.2.1)

1BT Mc be the solution to the state feedback regulator

Let Ks =R
problem for a given Q,R,where M. is the solution of the Ricatti equation,

and define the two problems:

a) For 1=4<r determine an output feedback gain K0 such that a pre-
scribed 4 dimensional invariant subspace of (A-BKS) is also an invariant
subspace of (A-BKOC).

b) For £ =r determine an output feedback gain KO such that an r dimensional
invariant subspace of A-BK  is also an invariant subspace of A-BK4C and Kq is

optimal with respect to the modified output feedback regulator problem

define above.

RPN ——————




The first problem has a non-unique solution and may be solved

using generalized inverses. This gives rise to an output feedback pole-
placement problem which may be used to shape the complementary spectrum
of A—BKOC. Thus Ky may be chosen to retain an 4 dimensional subspace

which is optimal with respect to a state feedback regulator and the re-

ma2ining freedom in Ko used to shape the spectrum of the closed loop system,
Rnxl 'n

=1 li Gcl be the eigenvectors

n . N
Let {ui} 1=1° Y € and tAJ
and eigenvalues of the optimal closed closed loop system F =A -BKS, where
the first 4 eigenvectors span the 4 dimensional invariant subspace of F to
be assigned to A -BKOC. It is assumed that 0‘2’)‘“1) is not a complex pair.

In order to work over the reals define a transformation T, by

[rowi(Tr)] = (0,...,0,1,0,...,0) if )‘i is real
t+ ith position
(2.2.2)
1 1,
rowi('rr) 0,...,0,-2-,-5_],0,...,0
= 11 if (}\i,}\i_'_l) are a
l".(mi+1('rr) 0”"’0’-2-’33’ 0,...,0 complex pair

4 ith position

o+ jw 0

Then under Tr the complex pairs 0 - jw) and [u+jv . u~- jv] are

mapped to l-_i” :] and [u . v] respectively.

Defining

- . . - -1
U -(Uln coe :UL)T 3 AL-TI‘

. : . dg(h .., A )T (2.2.3)

the problem may be stated as that of finding a gain Ko and a matrix P

such that

(A-BKOC)UL = ULAL

(2.2.4)
(A -BKSP)UL = U!'A

£




of full rank, such that

or equivalently, assuming B is

KQCU£ = KSUII

2.2.5)
KP =KC
s o
The general solution of equations (2.2.5) is
K =KU,[cu,]t+X[1_-cu cupl], x € &°F
) s 44704 r LT 1
(2.2.6)

1
P= KsKoC

*
where Al denotes any l-inverse of A [32]. By assumption (A,C) is observable
and 1f CU, has rank L<T one choice for (cU) 1s [(avyTccu 1™ cup?.

It should be noted that (CUL)]'(CUL) =Iy. If also (A,YQ) is observ-

able then KS=R-IBTMC is of full rank since Mc>0’ and the l-inverse of Ks

may be taken .to be K1=KT(K KT)-]‘ which satisfies K K1=I However, if
y s 's-s s’ ? ss m ?

(A;\G‘) is not observable, and in particular in the case of the minimum

energy problem, Mc and 1(S need not be of full rank and the formula for K: is

-1
K 0 K K

g: - \,{i 11 ] z , ZKY = 1 2 (2.2.7)
o 0 b1 %K

where K, €RP*P, YGRmxm, z GRmm, and rank (K ) =p.

replaced by

Since rank (Ir°CU.¢(CUL) 1)-1--1, there are only m(r-4) degrees of

freedom in the matrix X in (2.2.6). To eliminate the redundancy let

*
X is a l-inverse of A if AXA =A,
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(r-4)xr be of full rank and define Y eRmx(r-L)

SER by X=YS. Also note

N

that since P is to be eventually multiplied on the left by Ks, the factor

K].;,Ks in (2.2.6) may be omitted, The expression for P then becomes
P=U (CU 1C+K1YS I1_-CU,(CU )1 C 2.2.8
2(CUy) CHEGISI, -CU, (CUH (2.2.8)

Defining the matrices:

>
)

1
0 -A-BKSUZ(CUL) c 5

(=]
"

-BKSK: (= -Bif K, is of full rank) 2.2.9)

1
0 S(Ir -CU!‘(CU‘@) )C

(2]
]

and substituting (2.2.8) into (A-BKSP) gives the output feedback pole-

-4
placement problem of finding ¥ ERmx(r +B.YC

)such that the spectrum of AO 0¥Co

is satisfactory.
Since by construction A0+BOYC0 contains an 4 dimensional
invariant subspace it is possible to exploit this fact to reduce the di-

mensionality of the problem. Let T= [T1 . T2] be any invertible matrix
(@ -4)xn

with 1‘1=U£ and T, €R . Applying the transformation T to the triple
(AO,BO,CO) gives:
-1 AL ‘ X - X
T ART = | ~Zeeincan , T By =|--==] , CT=[0 : C,] (2.2.10)
i 1 1
where AIER(B_L)x(n-L), B, eR(n-JZ)xm’ CleRrx(n-l). The pole-placement

problem to be solved is then that of satisfactorily shaping the spectrum of

Rmx(r-.ﬂ)

A1+BIYC1 by an appropriate Y€

. The final output feedback gain will
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be given by

K, = KSUE(CUL)I-FYS[Ir -CUz(CUz)l] (2.2.11)

0

and the corresponding projection matrix P by (2.2.8).

In summary equation (2.2.1l) characterizes the m(r-4) degrees of
freedom available in solving the problem of retaining a prescribed 4
dimension invariant subspace of the optimal state regulator. The associated
pole-placement problem may be solved by any pole-placement procedure, but
in particular the dyadic solution for which software support has been
developed is appropriate.

If it is desired to retain an r dimensional invariant subspace of
the state feedback reguiator, it is possible to choose KO,P so as to
additionally solve the modified output feedback regulator problem defined
in the previous section. Whereas in the case 4<r it is only guaranteed
that using output feedback achieves the optimal state regulator cost in an
£ dimensional subspace, in the case L=r the output feedback control law
will also be optimal in the sense of the modified regulator problem.

In order to simplify the calculations it is assumed that a trans-
formation has been applied to the triple (A,B,C) such that C==[Ir 0].

Denote by M, the solution of the state feedback Ricatti equation and by
M(L) the solution of the modified regulator problem., Let {ui}izl and
be r eigenvectors and eigenvalues of (A-BR-lBTMC) and introduce the

(A}

partitions:
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T
. A1 A 1 '
A= , M_BR BTMC =
Aa1 By D1 o
T
In I T
L = » K=R BM, =[K :K)]
L Lo
I I o] .2.12)
. Y -1 r
(ul cees ur)Tr =y = 7z 12 N=ZY 7, P—[
N N 0
' rXr mxr . .
f : Ajyr Typs Lyys YERT, K  €R, T defined in (2.2.2)
- Then the following holds [31].
-1
r Theorem 2.2.1l: If the matrix Ar= (AZZ-ZY A12) has all its eigenvalues in
‘ the left half plane then:
1) The modified output feedback regulator problem has a solution M(L)=M(N)
‘ k for each L satisfying I_ZIL;]I_ = ZY-l = N, and the associated feedback
gain is given by
' R=RBHMP = [, +K,27" ¢ 0] (2.2.13)

2) The spectrum of the closed loop output feedback system A-BK is given

. y r
. by U‘i}iﬁlUc(Ar)'

3) The cost matrix M(N) may be decomposed as M(N) =MC+D(N), D(N) 20,

where D(N) represents the cost increase over the optimal state feedback

solution, and the null space of D is spanned by {ui} i:I so that in
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this r dimensional retained subspace there is no increase in cost

associated with using the output feedback control. D is given by

NTD N -NTD
22 22 (n-r)x(n-r)
K D= ’ D22 €R (2.2.14)
| -D, ,N D
: 22 22
{L
where D22 =D§2:>0 is the solution of the Lyapunov equation
T
A - =
(A22 -NAIZ) D22+D22(A22 NAlz)i-rzz 0 (2.2.15)0

" Furthermore the matrix D(N) provides a bound on the optimal cost

for the output feedback regulator problem. Defining Jg as the cost associated
with the optimal state feedback regulator and J, as the cost associated with

the optimal output feedback regulator then [31]

1
< =
Js Jo < Js + 2trace(DQo) (2.2.16)

In summary the problem of determining a gain to retainr optimal
eigenvectors has the unique solution K°==K1-kK2N. It is noted that this is

precisely equation (2.2,11) under the constraints 4=r and C==[Ir 0].

2.3. Retention of Optimal Invariant Subspaces by Dynamic Qutput Feedback
Compensation

In the event that it is not possible to stabilize the system by
static output feedback while retaining a desired 4 dimensional subspace of the
state feedback regulator,or that the spectrum of the resultant system is not
acceptable, a dynamic compensator of dimension p may be designed which will

retain an r+p dimersional subspace of the optimal state feedback cegulator,

L
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In this section the derivation given in [1] of a design oriented approach
to the construction of such a compensator of prespecified dimension p will
be presented. This approach reduces the specification of the parameters
of the éompensator to the solution of an output feedback pole~-placement
problem similiar to that encountered in the previous section in the design
of static output feedback compensators. In the next chapter an algorithm
will be given which simultaneously solves this pole-placement problem and
determines without apriori assumptions the dimension of the desired compen-
sator.

Again for simplicity the output matrix is assumed to be in the
form € = [Ir 0]. Introducing the compensator Z=Hz +Dy, HE Rpxp, D € RP*T
and momentarily assuming that the matrices H and D and the dimension p are
known, the compensator design problem may be treated as a pole placement

problem to which Theorem 2.2.1 may be applied. Defining the matrices:

1 | —
| Hy D 1 O
. H ,DC| [-2demememicaca-
A= ----..-_-- = b oA : A GR(n+P)x(n+P)
| b1 ¢ 21
0 IA 0""----7 -----
1
i A2 1 Az |
~ | . |z 0 I. 0 0
B = g] €R<n+p)m , C= P =| P eR(1:+p)x(n+p)
- 0 C 0 1 0
— r
(2.3.1)
n [0 o . [0 o X
Q = s Qo = . R=R
0 Q 0 Q

and the augmented state X = [; , the objective is to find an output feed-
-

back ua-ﬁa;c which retains an r+p dimensional subspace of the optimal

A A A

state feedback regulator associated with (A,B,Q,ﬁ) and which is optimal in
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the sense of the modified regulator problem.
Since the compensator state is not observable through Vﬁ the

solution of the state feedback regulator problem is

mo=]% 90 kx =r"BW =[0:&r
[ M ] [+
C

lBTMC] (2.3.2)

where Mc is the solution of the Ricatti equation associated with (A,B,Q,R).
Note however that if H is not stable, then (ADJEW) is not a detectable pair
and though optimal, the solution (2.3.2) will not be stabilizing. (See
remarks preceding equation (2.1.4).) This poses no difficulty in the design
methodology as the optimal closed loop system will then consist of the system
X = (A~BR-IBTMc)x driving an unstable open loop compensator. Even though

the compensator states will diverge, the plant response will be stable., The
implemented output feedback control law will stabilize the total closed loop
system,

Let {“i}121 and {A be the eigenvectors and eigenvalues of

n
i}i=1

the optimal state feedback regulator, where the first r+p eigenvectors span

the r+p dimensional subspace to be retained and ()\r’)\ 1) and (kr-l-p’}‘

r+ r+p+1)

are not complex pairs, Denote:

. . Y Xr n=-r)Xr .
(ul ceses ur)Tr = [Z‘] , YER T, ZER( ) , Tr defined in (2.3.2)

. . NRY rxp (n-r)xp
(ur+1 ceens ur+p)Tr [V]’ UER s VER (2.3.3)

-1 -1
A= T, dg(?sl oo kr)Tr s Ap =T, dg (A

r )T

r+1"'lr+p r

and define wp GRpxP and wr eRpxr by the eigenvector equation




F=A- BR"BIMC (2.3.4)

By Theorem 2,2,1, stabilization of the system by output feedback of the
measured variables and the compensator states requires the selection of
H,D and therefore wp and L such that the matrix A has a satisfactory

spectrum where:

J = -1 (n-r)xp (n-r)xr
N={[z Vvl| W wP [Np NI, NpGR , N €R
Y U

ne-

A =4A_-N| O = A

- 29 22 -NrA (2.3.5)

12

Ao

Using the formula for the inverse of a partitioned matrix the expression

for Ar may be written A, +B.PA, where:

1 707712

P | . (n-r)x(n-r)
Al A22 ZY A12 €R

v - zy" Ly er(-D)xpP (2.3.6)

(=
]

-]
]

L(Y-UL) L €RPXT | 1 - w;lwr € RP*F

Thus the satisfaction of the condition of Theorem 2.2,1 that Ar have an
acceptable spectrum is reduced to the solution of an output feedback pole-
placement problem, In the next chapter this problem will be solved by an

algorithm which computes P as the sum of a sequence of dyadic feedbacks and




R A A R A A

determines the compensator dimension p. It is noted here that the number
of columns of B0 is equal to the compensator dimension and that rank (BO)
is always maximal since the columns of Bo are eigenvectors of a particular
matrix arising in the block triangularization of F [1].

Assuming that this pole-placement problem has been solved and that

the dimension p and the gain P are known, the parameters of the compensator

are given by:

-1 _ ) -1 .

H=WHW®, H = [Ap LAY L P[1,+ ]
- . -1
D =W, D, , D, =[LA -ALIY [I +UP]
-1
L= (I+PU) PY
(2.3.7)
-1 -lU
=N_W ,N__= (V-2Y I +PU

Np = Npohp po = ¢ )T, +F0)

-4
"

2yt - w - ZY-lU)P

r
I 0 I 0 0
A . N _ATAA P l.‘+p - P
£ =([k 1K 10l =RBMP,B=|F =
s z . Ky . c e 0 0 Ir 0
N N O
p r

Thus the matrix P determines the compensator up to a similarity transforma-
tion wp vwhich may be used to obtain a favorable representation of the pair
(H,D). The final closed loop spectrum consists of the r+p retained optimal
eigenvalues together with the spectrum of Ar.

Before considering the solution of the pole-placement problem in
the next chapter some remarks regarding the resultant compensator dimension

p are appropriate.
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By Theorem 1.3, if p=n-2r+1 then the spectrum of Ar may almost
always be assigned arbitrarily., Thus a bound on the dimension of compensator
required to satisfactorily control the system is n-2r+1, In the case this
bound is achieved, the resultant closed loop system will retain r+p=n-r+1l
optimal eigenvectors and will admit an arbitrary complementary spectrum
through A.. As will be seen in numerical examples in Chapter 4, acceptable
designs may be obtained with compensators of dimension well below this
bound, particularly when the goal is to place all the eigenvalues in a pre-
scribed region of the complex plane rather than at prescribed locations.

In the case p=n-r all n optimal eigenvectors will be retained
and the resultant compensator may be identified with the reduced order
Luenberger observer. To make the correspondence explicit consider an observer

given by [33]:

W= Ew+Gy+Ru , EER® XM o (a-n)xr oo p(@-r)xm

A (n-r)xr

x2=w+Sy , SER (2.3.8)

where ;;2 is an estimate of the unmeasured state variables Xy (Recall

C=[I 0]). Defining an error e=x-x and introducing the partitions:

A, A
11 A
Xy rxan
A= , B = , A €R™T, B R
21 Az B,
(2.3.9)




T -

it may be shown that

+ (B2 - 8B, - R)u (2.3.10)

Thus the error will converge asymtopically to zero independent of x and u

provided

E=4,,-5,
G = A21 - SA11+A223 - SA].ZS (2.3.11)
R = BZ -SBl

and E is a stable matrix. Observability of (A,C) implies that the pair
(A22,A12) is observable and so the pole-placement problem for E has a
solution.

Implementing the control law as

xl w
u=r-(K K) |, =r- (K : K +K,5)
xz y
-1
(K, Kp) = R BTMC (2.3.12)

and using (2.3.11) the total closed loop system becomes

w F22-5F12 F21-SF11+F228-SF128 0 w

= -Ble A, - Bl(Klﬂ(ZS) A

-
dt 11

12

%) ~BK, 4,1 =B, (Ry#K,S) oY) x,
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B £ (2.3.13)

By comparison, the compensator of this section is of the form

v = Hv + Dy and may be viewed as producing an estimate §2 = va+Nry.

Under the control law

v v
u=r=-(0 Kl Kz) P X = r-(Ksz . I(1+I(2Nr . 0) X
*2
(2.3.14)
the closed loop system is
— e !_ - [
v H D 0 v 0
d
at ¥ |7 [TBKeNp ARy KpP KN Ay, | x|+ By |r
% [BRNp AR TRND Ay | %] | B2 |
(2.3.15)

Provided N;l exists, then under the transformation (;,xl,xz) = (N;lv,xl,xz)

(2.3.15) becomes

v N aN-t N D 0 v 0

; pp P

& | 2] 7| B AjpmB(KyHRN ) Ay, | x|+ BT
x) -B,K, Ayy "B Ry +KN) Ay | X B,

(2.3.16)

Now in [1] it is shown that the transformation T = EN ? upper

block triangularizes the optimal closed loop state feedback matrix provided

N=2Y 1 exists and EZI] is a matrix of optimal eigenvectors of the closed
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loop system. Applying this result to the compensated system of this section

gives
H D 0 H D 0
-1
TIO By P | T = | ENS R 4FLN Fi, (2.3.17a)
0 F, F,, EN LN g(NN)  Fy, -NF),
where
* I 0 0
. P
. T=|o0 I o0 (2.3.17b) :
’ S A
: '
ol EQN_,N) = (-NHN '4F, -NF .)N =0 :
. p’r P P 22 1277 T !
(2.3.17¢) :
BN N) = (-ND+Fy) -N Fi; +F,,N_ -N F N ) =0
B Identifying S~N_ and comparing (2.3.13) and (2.3.16) it follows

that the compensator of this section is a Luenmberger reduced order observer
in an appropriate basis provided the reference input is zero. Furthermore

the dynamics of the error equation are governed by the matrix-

| whose eigenvalues may be arbitrarily assigned by state feedback pole-placement

since BO is square and of full rank n-r.




41

CHAPIER 3

FURTHER ASPECTS OF THE DESIGN METHODOLOGY f

3.1. An Algorithm Solving the Associated Pole-Placement Problem

This section presents an algorithm which solves the output feed-
back pole-placement problem of section 2.3, associated with the design of
compensators for suboptimal regulators. The problem is to determine the

gPXT

compensator dimension p and a matrix P€ such that the spectrum of Ar=

A1+B0PA12 is satisfactory (see equation (2.3.6). A solution is obtained
here by iterating the proof of Theorem 1.3 in the manner suggested in [2].
Recalling that the number of columns of Bo is the dimension of the compensa-
tor, the idea is to start with B0 a column vector and successively increase
the column span of Bo, solving a partial pole-placement at each stage, until
satisfactory spectral characteristics are obtained for Ar' The degree of
the required compensator will then be the number of columns of BO and the
parameters H,D,KZ,Ky of the design will be given in function of P by (2.3.7).
The algorithm consists of the solution of a sequence of pole-
placement problems defined as follows. Given from the first part of the
design are the observable pair (A22,A12) and the optimal closed loop eigen-
values and eigenvectors {xi}izl’ {vi}izl where the A, are distinct. It
is assumed that the Xi and A have been ordered such that (xr’hr+l) is not a
complex pair and such that the matrix Y defined in (2.3.3) is invertible.

The ordering may also have taken into account the relative importance which

the designer may attach to the optimal eigenvalues, Define:

|
]
i
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s 1= @y v, ver™, 2erTI, 1 defined 1n
2.2.2)
u, | | u
L n-r_| _ . . rxl (n-r)xl
L |v (vr+1 eees Vn)Tr’ uieR , viER
M | “a-r
' (3.1.1)
i by =v; =Nguy, NO=ZY'1, By~(by I..1by), i=1,...,nex
| Since A12 has the role of an output matrix and since it will be

required for the output matrix to have full rank in the pole-placement pro-
Ax
cedures to be described, denote 1=rank(A12), let TER ¥ be any matrix of

full rank, and define a new output matrix C =TA1 Also since the pole-

2°
| ;‘ placement problem for the triple (Al,Bo,Alz) may be solved as a state feed-
back pole-placement problem if 4=zn-r, this case will be discussed at the
end of the section. Presently it will be assumed that f+r <n.

The algorithm may be stated in terms of two pole-placement proce-
L dures, to be defined below, as follows.

Algorithm

0. Initialize i=0.
1. Let i=i+l.

t 2, Using either procedure 1 or 2 below, compute a dyadic feedback

: ixl 1x4
% figi’ fiGR s giGR (3.1.2)
I to assign i+ 4 -1ldesired eigenvalues to the matrix:
Ai+1=Ai+BifigiC (3.1.3)
3. 1f the resultant spectrum of A

+1 is unsatisfactory or if the algorithm

i
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may not terminate because Xi’ A is a complex pair, goc to 1.

i+l

4. Let the compensator dimension be p=1i and let

algorithm will terminate after at most n-r -4+ 1 stages.

. fined by the algorithm., At the ith stage the system (Ai’Bi’c) has i inputs

and 4 outputs, Thus, with possible exceptions due to the system lying on a

hypersurface on which the results of the theorem fail to hold, i+ 4-1

r‘.

The procedure then is to choose an input (or output) space projection which
reduces the system to a single-input (or single-output) system and renders
i - 1 eigenvalues uncontrollable (or A4-1 eigenvalues unobservable). These
eigenvalues correspond to eigenvalues already assigned during the (i-1l)st

stage, Next feedback gains are computed to place at desired locations as

many additional eigenvalues as there are outputs (or inputs). Because

uncontrollable and/or unobservable eigenvalues are invariant under output
feedback this will result in the assignment of i+ 4 -1 eigenvalues of the

matrix Ai+1' Both state space and frequency domain based procedures will be

. 4 given.

It will be assumed that (Al’bl) is a controllable pair, and there-

fore that each pair (Ai’Bi) is controllable, The case when (Al,bl) is

uncontrollable will be discussed at the end of the sectionm.

(3.1.4) 0

Since the spectrum of Ar may be assigned arbitrarily if p+4 -1=n-r this

Procedures 1 and 2 apply Theorem 1.3 to the systems (Ai’Bi’C) de-

eigenvalues of Ai+1 may be assigned arbitrarily closely to desired values.

Mt m o




R, Y e . .

.oy

44

Procedure 1

The system (Ai’Bi’C) is transformed to the single-input system
ixl is chosen to render i-1 eigenvalues of A

4

(Ai’Bifi ,C) where fiER .

uncontrollable. A vector giGRlx is then found to place { eigenvalues of

Ai+1=Ai+BifigiC' If i=1, then fl=1, and the first part of the procedure

is omitted.

State Space Solution

Let {Gk} rl::].: be the eigenvalues of Ai’ the first i-1 of which are

vkERlx(n_r), be the corresponding left

to be retained, and let i.vk} 2:17,

eigenvectors. With 'rr given by (2.2.2) define

v v

1 . i .
V. =T T S eR(L-l)x(n-r)’ V. =T T ——- GR(n r-i+l)x(n-r)
1 T ot 2 r e
Vi-1 Vn-r (3.1.5)

Recalling that an eigenvalue is uncontrollable if the corresponding left

eigenvector is in the null space of the input matrix, select a vector

fiéRLXI satisfying VlBifi= 0. Then {Ck} i;i will be invariant under further

feedback and for each k such that the kth entry of VZBifi is nonzero, the

eigenvalue € ri-1 will be controllable. A solution of V Bifi =0 always

1
exists since this corresponds to cfinding an i-vector orthogonal to (i-l)
i-vectors, However conditions under which the n-r-i+l remaining eigenvalues
will be controllable are not available,

Equations (1.5) and (1.6) determine the gain gy to place £ eigen-
values of the triple (Ai’Bi

entries of VZBifi are nonzero with £ <4 then £ should be used in place of

. .’ -
fi , C) at desired locations t°k1k=l' (If §

4 in the following formulas.) Let the characteristic polynomial of Ai be

s e i D et Al

RERNEERS YEFER I
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n-r i
p,A) = Z &h . o3, =1 (3.1.6)
and define the matrices:
- . . . ,D-r-1 (n-r)x(n-r)
Q=[Bf :ABE I...0A B,f,] €R
T -
an-r_l. ® o0 s e e a2 al
1.. '.. a2
R = - - : gg(n-r)x(@-1) (3.1.7)
0 .. .. ¢
1 an-r-].
[ 1
n-r-1 dn-r-l—‘ cn—r -:—l
01 a0 00 z 1 oo 8 v ox
s=|: : T er®* g - SN S St
1 0000 000 l 1 0 s s z
1 oceeeeen 1| 1 el

P = (pg(0y)y-eepPg@ )T =

where Tr is given in (2.2.2).

8; (CQRs) = P
will assign to the spectrum of Ai+1=Ai+B £

i-1
k=1

Frequency Domain Solution

{ok} kfl and {e k}

The transfer function of the system

17181

5 4
(1,8 poyr o310 30)8 er'™

Then the solution 8 of

(3.1.8)

C the £+1i-1 eigenvalues

(Ai’Bi’C) may be written

e
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CAI-A)T'B, =N /a0
aer (3.1.9)

d(}\)=k§O a N, a2 =1

k ’ n-r

where the roots of d(M) are [eg}z;i of which the first i-1 are to be

retained. The numerator polynomial matrix may be written

voy = | 1P m® (3.1.10)
. nL;(X) .o nzi(k)
L 3
: n-r-1 5 Mk ot M1k
. ng i) = Zy mpd s M=o :
gkt "eik

‘ (In nijk the index i indicates the row of N(A), j the column of N(A), and k

the degree of the term of nij(h) in which n, . appears,)

jk
Recall that the goal is to render i-1 eigenvalues uncontrollable by
a choice of fi and to choose 8y to place 4 eigenvalues. Since an eigenvalue
of a single-input system is uncontrollable if the numerator of the transfer
function is zero evaluated at that eigenvalue, it follows that for tek}i;i
to be uncontrollable eigenvalues of the single-input system QAi,Bifi,C ) it
must hold that N(ek)fi=0 for k=1,...,i-1. By Lemma 1,2 rank N(ek) =1.
Let {jk}i;i be any sequence such that the jﬁh row of N(ek) is nonzero, and

define

= (0,...,0,1,0,...,0) (3.1.11)
t kth position

(W)
) ) “‘




Then fi may be computed as the solution of

TrTMfi =0 (3.1.12)

where '1‘r is given in (2.2.2). For purposes of numerical evaluation the

e e e

! rows of the matrix TrTM may be obtained as

n-r-1_x ,
‘ (L € seeas®y )Njk if e, is real
] 1 Re€) ,...,Re( )" " (3.1.13) !
N, if (ek’ek+1) is a complex
i 0 ImE,),..., Im(ﬁk)n-r-l pair
where
i
!
n n
. 310 310 i
| fo=| " er®T% (3 1.14)

|
nja(n-r-l) sese nji(n-r_l)

It should be noted that the same difficulties regarding the choice of fi

are present here as in the state space solution, That is, M may be rank

deficient in which case there will be a multiplicity of choices for fi’ and

r

not all the remaining eigenvalues {ek};;i need be controllable with respect

: to the pair (Ai,Bifi ). Their controllability may be verified by computing
the vectors N(ek)fi’

4
] To assign the eigenvalues {ck}k=1 the gain 8 is computed from

equation (1.31)-(1.35). Since the transfer function for the single input

system (Ai’Bifi’c ) is

-1 ner-1 K
CQAIL-A,) Bifi- N £f. A

= Zo NE A /AR (3.1.15)




define xkstfi’ k=0,...,n-r-1, Also let pc()\) =pl()\)p2(h) where

4 A :
- -0,) = L k 4=
A= Z (A-0) = I, A, d =1 (3.1.16)
n-r-4

k -
Pp) =Xy WAL B =1

Then 8 is determined from the (n-r)th order system of equations

(€:h) X=Y, h=(hghy ..coh __, )
[y eeeeeeeeeeeeen sl X
N IR PRSI P 0 0| armxtaen)
O T Ger hoee? (3.1.17)
L_é) .......:.do ..dl ..........::‘dz_;. 1—
Y = (ao 8y eeo an-r-l) -0 ... 0 d0 d1 e dr-l)

The remaining spectrum of A is determined as the roots of the polynomial

i+l
py(A).

If § eigenvalues of (Ai,Bifi ) are controllable with £ <4 then in
general (3.1.17) will be inconsistent and must be modified by replacing 4
with E.

To illustrate the notation consider an example.

Example 3.a.l: Suppose the system (Ai’Bi’C) at the ith stage of the algorithm

is given by

¢ —e g
[




The transfer function is-

MeaZoaa+l -1

C(AI-Az)'1 B, = 2—1—-—- A A2 -
MA-DOH2) |32 9y Ao
3 .k
= «20 Nkk /d@) (3.1.19)
1 -1 =2 1 1 o0 1 o0
N0=0 » Ny= 1-1,N2= ,N3= 0o O
0 0 2 =2 1 o 1
To render the pole at -2 uncontrollable an f2 GRZX]' must be found satisfying
1 -1
a A -2 1
(L -2 4 -8)N,f, =0, N, = (3.1.20)
172 1
1 0
0

This has solution f2 = (3,1)T and the resulting transfer function for the
single input system (AZ’BZ f2’ C) is
3 3 -5 2

-1 1
COIL-A)) "Byf) = 305

(3.1.21)




1f the remaining poles are to be placed at -1+ jl, -3, the desired partial

‘characteristic equation is Py ) = }\3 + 5)\2 + 8\ +6. Equation (3.1.15)

becomes

0 -2 1)-(0:6 8 5)
(3.1.22)

and has solution 8, = (-6, -50, 12), h°=2. The eigenvalues of A, may be

3
verified to be ~1+1j, -3 together with the root -2 of }\+h°.

Procedure 2

The procedure is the dual of Procedure 1. The idea is to transform
£

the system (Ai’Bi’C) to the single-output system (Ai’Bi gi,c) where giER]'x

is chosen to render £ -1 eigenvalues of Ai unobservable. A vector fiERlx}'
is then found to place i eigenvalues of Ai+1=Ai+BifigiC' If 4=1 then
the first part of the procedure is omitted.

State Space Solution

Let {sk}i;i be the eigenvalues of Ai’ the first 4 -1 of which are

to be retained, and let {vk} ;i, VkERn-rXl be the corresponding eigenvectors.

Define
- . . (n-r)x(4~1)
Vl (vl Seens vz_l)TrGR
(3.1.23)

- . . (n~r)x(n-r-4+1)
V2 (VL ceees vn_r)TrGR

a1
To render [ekj =1

ability of the remaining eigenvalues may be checked by computing the vector

unobservable select g such that giCV1=O. The observ-
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8;CV,-
Let {ck} kil be the i desired eigenvalues to be assigned to A, ,

by £,. By the dual of equations (1.5), (1.6) £; is given by (SRQBi)fisﬁ

where:
nir Kk
Po(?\) = |)‘I-A:L‘ “x=0 % A, h-r "~ 1
cg-r-l KRN 01 1 O?-r s e 01
g = TE . . eR:I.:m-r , §=Tz . eRixn-ri—l
n-r-1 y : n-r .
i LR NN 3 oi 1 oi o e s e oi
(3.1.24)
— — — —_—
NCH 1 8;C
a T . _ & ixl - n-rxn-r
P=1T. | : = S|la__,|€r, Q 8,CA, €R
py(o;) : i
01 : o el
1 L._i i |
| %o |
— I
1
an-r-]. 1 0
R= | : .. grTIRE
a, ',. ‘1
a a, e.. & 1
_1 2 n-r-1 _J

If § eigenvalues of Ai. are observable with £ <i then § should be used in
place of 1 in (3.1.24).

Frequency Domain Solution

Let the transfer function of (Ai’Bi’c) be given by (3.1.9),

n~-r
k=1’

(3.1.10), and let the eigenvalues of A, be {ek} the first 4 -1 of which
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are to be rendered unobservable by the selection of g+ Then 8 must

satisfy

giN(ek)=0 s k=1’o.l’£-1 (3.1-25)

and may be obtained as the solution of gfwrr==0 where the kth column of M
. L=

is a linearly independent column of N(§), k=1,...,4-1. If ijk} k=i is a

sequence such that the j;ﬁ column of N(Gk) is nonzero then the columns of

MT  may be computed as

1
~ ek
N. . if ¢, is real
I . k
en-r-l
—k —
(3.1.26)
1 0
Njk Rc:_(ek) I:El(ek) if (€k, €k+1) are a complex pair
Re(ei-r-l) Im(‘-:;:-r-l)
where
nljo sescssces nlj(n—r-l)
ﬁj = | : : (3.1.27)

nljo eeescese nlj(n-r-l)

To assign the eigenvalues {gk}kil the gain fi is computed from
the dual of equations (1.31)-(1.35). The transfer function of the single-

output system (Ai’Bi’gic) is

n-r-1 Kk
g,CAI-A)B, = L, gN A /dQ)

(3.1.28)
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Define x’k’giNk’ k=0,...,n~r-1 and let pc()\) =pl()\)p2()‘) where

i i
Kk
= 2 - = Z =
Pp(A) = &y (h-oy) =1 2 G A d; =1
neri (3.1.29)
k
= z =
p2 oy k=0 hk AT, hu-r-i 1
Then fi is the solution of
X =Y, h=(h, h yT
> 0 ™1 Mper-i-1
p’fg----- do 0 :o-o ? ao ?
| d IR a :
' ].' O. ‘0 -l 0
. d, ° :
d 1- .- .
: i-1 .. 9 : do
X = I 1 : "a, AR -l 4 (3.1.30)
: d : : :
l. * i'l - . .
| : 1 ‘ot : .
e A 1 | %n-r-1 | | %51 ]
En-r-l 0 0....1

I1f £ eigenvalues of Ai are observable with  <i then § should be used in-
stead of i in equation (3.1.30).

In the discussion of Procedures 1 and 2 it has been assumed that
4<n-r. In the case that £xn-r the spectrum of A, may be assigned by
state feedback and the algorithm will end at the first stage. Let P'c Rlxn-r

be a vector assigning a desired spectrum to Ar=A1+blP'. Then P may be

taken to be any solution of

PIA,, = P' (3.1.31)
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v and the degree of the required compensator will be one. Equation (3.1.31)
always has a solution, being a set of n-r equations in ¢ unknowns.
1f QAl,bl) is not controllable the algorithm may still be applied

only with the distinction that at the ith stage any uncontrollable eigen-
values of (Ai’Bi) will be contained in the spectrum of Ai+l in addition to
those placed by the designer. This may be used to advantage if the uncontrolla-
ble eigenvalues are "acceptable'", If they are not then it may be

b advantageous to choose a different ordering of the eigenvectors tvk}kzl of

B C) is

. the orginal system. It should be noted that the system (A

n-r’ n-r’

controllable since the colummns of Bn-r span AT [1]. The algorithm will
therefore eventually reach a stage where (Ai,Bi,C) is controllable regard-
' 4 less of the ordering of the eigenvectors.

In summary, this algorithm, when incorporated into the methodology ;
for designing low order dynamic regulators, determines the degree and ”
implicitly the parameters of the required compensaéor that shapes the entire
spectrum of the resulting closed loop system. This is achieved by computing
a feedback matrix P as a sum of dyadic products such that the spectrum of
l Ar:=A.1+BOPA12 is satisfactory. The spectrum of the total closed loop sys-

tem is then determined as the spectrum of At together with those eigenvalues
corresponding to the selected Ny and {bk}kzl’ and the parameters of the

compensator are fixed as functions of P,

3.2. Review of the Design Methodology

Before considering several numerical examples in the next chapter,

it may be useful to summarize the design methodology that has been presented.
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] Because the information structure of most linear systems prohibits
the implementation of optimal control laws based on state feedback, a design

| criterion has been defined to be the construction of suboptimal control laws
that retain as large an invariant subspace of an optimal state regulator

as possible in the resulting closed loop system.

f A preliminary study of the system should, in addition to an
identification of the controllability and observability structure, include
an analysis of the possibility of satisfactorily shaping the closed loop

spectrum by static output feedback., As will be seen in the examples, in-

Al A -y

sight helpful inthe selection of Ar and AP may be gleamed from such an

analysis,

‘ . Having defined a state feedback regulator problem through the
selection of weighting matrices Q,R, the Ricatti equation must be solved
and the resultant closed loop eigenvectors and eigenvalues computed. The ]
possible choices for A, will be no more than C(n,r), and by inspection of

the optimal eigenvectors may be easily identified in accordance with the

requirement that complex pairs not be split and that the matrix Y be in-

o e

vertible. On the basis of the spectra of the resultant matrices Al’ r
eigenvalues must be selected for retention. If none of the spectra are

acceptable, and a compensator is to be designed, then this choice may be

guided by an "identification' of those eigenvalues which have contributed [

most to the unacceptability of the spectrum of Al, in their departure under

output feedback from their optimal locations. The selection of Ar may also

| e i————— o

|
|
j
be based on information obtained from the preliminary pole-placement ‘
i
1

analysis, or on the retention of dominant eigenvalues,
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When this first part of the design is completed, a decision must
be made whether to improve the dynamics of the system by retaining p
additional optimal eigenvectors through the introduction of a dynamic com-
pensator or'by reducing the number of retained eigenvectors from r to £<r.
Because the preliminary static output feedback pole-placement problem
corresponds to the case 4 =0, unless this problem had a satisfactory solution
the design of a dynamic compensator should be undertaken.

If a compensator is to be designed, the remaining n-r eigenvalues
must be ordered, the vectors bi computed, and the pole-placement problem for
the triple (AI,BO,AIZ) solved. This ordering may again be based on the
desire to retain at their optimal locations those eigenvalues most contribut-
ing to the unacceptability of the spectrum of the matrix Al corresponding to
the selected Ar. It would be desirable to also take into consideration the
controllability properties of the pairs (Ai’Bi)’ but a convenient criterion
for ordering the vectors bi to enhance the solvability of the pole-placement
problem is unfortunately not available. The pole~placement problem is
solved by computing a sequence of dyadic feedbacks, at each stage increasing
by one the number of optimal eigenvectors retained (as well as the number of
assignable eigenvalues of A, and the number of columns of Bo), until a
satisfactory tradeoff is achieved between the spectrum of Ar and the dimension
p of the compensatof. At each stage of the algorithm certain previously
assigned eigenvalues are chosen to be retained and a number of additional
eigenvalues of Ar are specified. This provides the designer with consider-
able freedom to meet design specifications for the n-(r+p) remaining eigen-

values of the eventual closed loop system. 1In particular though arbitrary

pole-placement for the matrix will not be possible if p <n-2r+l, this




l
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freedom may be used to place the eigenvalues of Ar in desired regions of the
complex plane, as may be determined for example by minimum damping ratio
requirements, or other considerations,

Once the pole-placement problem has been solved satisfactorily,
the dimension of the desired compensator has been determined and the param-
eters H’D’Kz’Ky may be computed in any convenient basis, completing the
design procedure.

The computational aspects of the design procedure are straight
forward, involving only the solution of eigenvector equations, the solution
of linear systems of equations, and associated algebraic manipulations.
Following a transformation of basis to bring the output matrix to the form

{1

. 0], the solution of a Ricatti equation, and the determination of the

optimal eigenvectors, at most C(n,r) eigenvalue calculations are required

to compute the spectra of the matrices Al. The solution of the pole-
placement problem by state space procedures requires at each stage the
computation of the left (or right) eigenvectors and the characteristic equa-
tion of Ai’ the solution of a homogeneous system of equations of order r

(or i) to determine fi (or gi) and finally the solution of an inhomogenous
system of equations of order i (or r) to find 8y (or fi)' As the pole-
placement problem is solved interactively, allowing for the repeated execution
of each stage of the algorithm until the designer is satisfied with the

spectrum of A the solution may be costly if the dimension n-r of Ai is

i+1°

large and many repetitions are employed.

The final computation of the parameters of the compensator in-

volves only the algebraic manipulation of matrices.

it




:
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The design methodology will be illustrated by several nontrivial

examples in the next chapter.

3.3. Extension to Stabilizable Systems

Although it has been assumed that the triple (A,B,C) is comntrolla-
ble and observable, this restriction may be relaxed., 1In this section the
application of the design methodology to the class of observable, stabiliz-
able systems (X,ﬁ,é) is considered and it is shown that for such systems the

dynamic compensator of section 2.3 possesses a separation property.

Let the system be represented in the canonic form

~ ~ A
. | S A I A 0 . mxl ,  myxl
< - + u, %, €R x, €R
a | X . X e ) Xy
0 | A1 B2 | |% B
(3.3.1)
A ~ A xl !
y=€ & . |
xz |

~

where 311 is a stable matrix, the triple (Azz,Bz,ez) is controllable and

observable, and the pair (111,61) is observable,

Consider first the solution of the state feedback regulator problem
for this system, It may be assumed without loss of generality that R=1
(under a transformation Gﬁ=1/1;u). Compatibly partitioning the solution M

of the Ricatti equation (2.1.2) gives the three equations:

T

~ ~ ~ :-T
Ayptyy + Myphyy ~MyrByBy My, +Q,, =0

ST g T R ‘ Ay
(App = MynP2 BMyy +Mp 4, + Q) +My54,,) =0
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~T - AT T ¢ T 2 2T
Aty FMppAy g+ By My M08 mM3ByBaMyy +Qy) =0
the first of which is the Ricatti equation for the subsystem 6222,32) with
penalty Q22. The optimal control is then
x
a=-®E) | |, @ &) =Gl i) (3.3.3)
1% o (K Kp) = (BoMyy 1 Bty -3.

*y

and the closed loop matrix is

All 0

F= , F

~

F)y Ty Fag = 8s5 = BKy

Thus the optimal control has the property that the controllable subsystem
F22 is the optimal closed loop system matrix for the pair (&zz,ﬁz) with
penalty Q22. The optimal control shapes the dynamics of &22 exactly the
same as if there were no driving uncontrollable subsystem (&21==0), but also
expends energy in shaping the eigenvectors (and therefore the response) of
the uncontrollable state variables., This is true even if the uncontrollable
states are not penalized (Q =dg(0 QZZ))'

Let the controllable and uncontrollable eigenvalues of the optimal
closed loop system be

n n

1 2
Cif a1 = @1 0 Ml 1= = 9Fpp) (3.3.5)

The optimal controllable eigenvectors may be written explicitly as

JSTTorn

I i o sk i




I

, S T PO (3.3.7)

In order to apply the methodology for the design of dynamic compensators it
is necessary that the matrix Y in equation (2.3.3) be invertible. 1In an
arbitrary basis this requires the selection of r eigenvectors such that the
matrix CU appearing in equation (2.2.1l) is invertible. Assuming that a
design criterion is the retention of as many optimal controllable eigen-
vectors as possible, the maximum number of controllable eigenvectors which
may be retained in Ar is therefore r, where
r, =rank(Cy[v, 1.0 v D) (3.3.8)
. -,
n

Since the pair (Rzz,ﬁz) is observable and the vectors vic span R 2,(3.3.8)
simplyfies to r2==rank(C2). Thus r, controllable eigenvectors may be
retained in Ap> and the remaining r, =r-r, eigenvectors must be selected
from the uncontrollable subsystem.

To obtain the separation property for the compensator, the output

matrix 1s first transformed to [I . 0]. Let rank (Cé) =r, and let S be any

full rank output-space transformation such that

et el il Lol

DO T PR Y .o~ e g |
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-~ -~

SC2 =1 , rank (C22)=r2 (3.3.9)

Then under the transformation y =Sy the output matrix takes the form

11 Tr.Xr

r, Xr
s 1771 2772

C= ,Cuen ,CMGR > T ¥, =T

22 (3.3.10)

Now let Tl and '1'2 be any matrices such that the transformation x'=T% is

invertible where

~ l ]
%, !
eces oo‘ o
Tl ‘
T= :--- -|000:..' (3-3-11)
€21 | S
ss e -oo’ocoocto

- .
? [ t
q xl All 0 xl
T + (3.3.12)
xl Al Al ]
(%2 |[f21 "2z ||%2 ]
r— 5 —
I 0 0 X
r, 1
y:
0 0 1 0 ||x!
L T, 2

Introduce the partitions:




-

the system is represented as:

dt
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Ay A3 Ay A3
1 = [ .
A )
) A A A3
B c T T
3 X b |
(. ' . (.
B, X ]
B b ¢ X ¢
4 2 | *2
- r,x1 = n.o=r.x1l r,x1
c 1 c 171 c 2
X, €R » % €R s X €R
Then under the permutation of states:
x, € I 0 0 0
1 r,
c
Xy . 0 0 Ir2 0
x2° 0 1 0 0
n -t
xzc 0 0 0 In -r
- 2 "2
All 0 A12 0 0
A A A A B
wa| P30 %33 B3 faag 1|
A21 0 A22 0 0
41 A3 Aa A | By |
Ir 0 0 0
1l
y= X
0 Ir 0 0
2

34
A
(3.3.13)
n,-r, x1
, xzcER 2 "2
(3.3.14)
(3.3.15)

In this basis the controllable and uncontrollable optimal closed loop eigen-

vectors have the form:

e i s A i
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4
4
i
®3 i a T
i’ = ui H
0|
2u ]
(3.3.16)
B ! At the first stage of the design it is necessary to select Y,Z and
* to compute c(Al). From (3.3.8) and the structure of the output matrix in
¥ i (3.3.15) it follows that at most r, controllable eigenvectors may be retained
in Y. In accordance with the design criterion of retaining as many optimal
}j controllable eigenvectors as possible, let: ;
X3 1 _ — '
- ! - - r r
6 [ c _ 1 1 c _ 1 2
Y, 0 Y, [m1 w, 1, Y, = [¢3 <b3 1 ;
TTeE e 2% = [} ... w1 (3.3.17)
L_? 2| 2 3 3 °
— -
T T 1 o1 c 1 T2
z = Zl 0 Zl = [wz . wzr ] ’ ZZ [¢4 LN ¢4 ]
< c |’ c_,1 1
2 % | Zp =l
0 0
R T KA T TN 1=1,...5mp71y
@ @
3 | 4
ri+r1 l+ry .
w Y2 ‘.
u N = v = , i=1,...,n,-r :
i+(n,-r,) . i4r, |? i+(n,-1,) . i+rli 171 i
BEg— 4 |
Then from equation (3.1.1):
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< [ Z,, ©.-1
1 No 0 No = Zl (Yl )
No = 7Y = s
c €. c.-1 c,, c.=-1 ¢, c.-1
Ny N Npyp =2, (%) -2, (%) Y, (%)
-1
Noc - ZZC(YZC)'
([ \ it+r it+r
0 ) b C = @ 2 -N ¢ @ 2
e i=1,...,0,-1, i 3 o 4 (3.3.18)
Li_ - i+r-n - it+r-n
b, = é . >, b ¢ = W 2 -N ¢ )] 2
i z i 2 fo} 1
b .
L1 i=ner,.ner I SR
b! i 4 21 71
i / i+r-n
r-
c 2
+ No w3
T
822 "Ny By 0
Al ) c c
Aup = WppA1p #N Agp) 84, =N 4y,
- n,-r n,-r
Note that the vectors bic and bic span R and R 272 respectively (see

remarks following (2.3.6)).

Assuming that only controllable eigenvalues are to be retained in

c . . [+
1 oteees Byl

finding a feedback P= [Pl le to satisfactorily assign the spectrum of

0 A, 0
A= A+ (®, B,) (3.3.19)
By Ay Ag,

c
- No A12

Ap, define Bi = [b Then the pole-placement problem is that of

It should be noted that Ar contains an uncontrollable subsystem A22

whose spectrum is the n, -y uncontrollable eigenvalues not retained in Ar' P

The remaining spectrum of Ar may be shaped by solving a pole-placement
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c
problem for the triple (A44 -No A34, B A34).
Assuming the solution of this reduced pole-placement problem is

B, the required compensator parameters may be computed from equation (2.3.7)

with P=[{0 PB,]. Let:

1+r r

2 2*P

u, = [¢3 ¢3 1, v2=-[¢4
(3.3.20)

Bo = [bl cee bp]’ Ar=dg(Ar1’ 1\:2)

where Ar R Ar correspond to the Ty uncontrollable and r, controllable
1 2
eigenvalues retained in the first stage. Then it may be shown that:

c c. -1
[Ap-L 1\]:2(Y2 ) UZ][I+P2U2]

c c c,.~1
(L Ar2 -APL )(Y2 ) (1 +U2P2)

[L‘:Arl - L°Ar2 t,%) "'y, ] @,

(3.3.21)

-1 c T -1 c
[1+p202] B,Y,” , L [1+qu2] P,Y,

c = - c = '
N [V, =N _“U,1[I+P,U,] =B![I+P,U,]

Partitioning the optimal state féedback gains in this basis as K = [K, KZ],

c

c 3 c .
K; [Kl Kl 1, l(2 [1(2 K2 ], the suboptimal feedback gains are given by:




P c
Ky = K1+K2Nr [Ky K}’ ]

c
K, = KZNp =K,

< T.¢C c
R O+E, N SN,  (3.3.22)

ch +K2chc
chNpc
It is noted that Kyc is independent of the solution P of the pole-placement
problem,

By the superposition principle for linear systems, the controller

may be represented as two compensators in parallel:

u=u®+u (3.3.21a)

c c c c.c c
u =sz +Kyy, v =H o (3.3.21b)

T cc cc
u -Kz \ +Ky Yy , (3.3.21c)

The compensator given in (3.3.21b) is precisely that compensator which
would have been designed if the controllable and observable subsystem
(A£2’Bi’(lr2 « 0)) were operating in isolation. The second compensator
(3.3.21¢c) represents a modification in the control scheme due to the presence
of the driving uncontrollable subsystem Ail' A block diagram of this con-
troller is given in Figure 3,3.1.

In summary it has been shown that the design methodology may be
applied to stabilizable systems, and that the resultant compensator satisfies

a separation property. It is noted that the restriction that the system be
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For controllable systems the compensator of (2.3.7) has the block diagram:

y
~O———L 1 /1
A
O /] :
[

L
2 e

For stabilizable systems the compensator of (3.3.21), (3.3.22) has

the block
diagram:

ot

)
A1.].

Figure 3.3.1. Compensator structure for controllable and stabilizable systems
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observable may be relaxed provided the designer ensures that the matrix Y

in (2.3.3) is invertible.

3.4. Software Support

The examples in the next chapter were solved using an interactive
Fortran program DSGN-FOR written to implement the methodology described in
this thesis. The algorithm solving the pole-placement problem was implemented
using the state space formulations of Procedures lLand 2. A flow chart for
the program is given in Figure 3.4.1.The user is assumed to have previously
obtained the solution Mc to the Ricatti equation and to have stored on disc
in column major order the matrices A, B, R, Mc in a basis representation in
which C:=[Ir 0]. The matrix Q is not needed.

All eigenvalue and eigenvector calculations are performed using
the IMSL subroutine EIGRF, which returns an estimate (on the user's console)
of the accuracy of the computed eigenvectors, The eigenvector computation
is satisfactory if this estimate is less than one, fair if between one and
100, and poor if over 100. The eigenvalues are then ordered by increasing
real part, and their corresponding eigenvectors are normalized to unit
length, 1In the case of a complex eigenvalue, the corresponding eigenvector
is represented in its real and imaginary parts and is only determined to
within a complex multiplicative constant cos @+ j sin €, All matrix
inversions are performed using the IMSL subroutine LINV2F which also returns
an error code which should be zero.

In the solution of the pole-placement problem for AT,=A1-+BOPA12

the vectors fiare computed as zero eigenvectors of the matrices obtained by

augmenting the homogeneous systems VlBifi==O with a zero row., The vectors
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b4

input A,3,R,M from BSK

Compure and display
2(A).IE, V(EF)
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Figure 3.4.1. Flow chart for DSGN.FOR
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g; are computed as the solutions of the square inhomogeneous systems
(cQRs)T gT=-§T using the subroutine LINEQ available from [34]. The routine

returns a condition number for the coefficient matrix which is typed on the

user's console.

All output is to the lineprinter only, though the user has the

possibility of suppressing the listing of any undesired data.
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CHAPTER 4

EXAMPLES

4.1. Saturn V Booster Mudel

In this example a second order compensator is designed for a
seventh order, single-input, two-output model of a Saturn V booster. The
model has appeared in three articles [23],([24],[35] on output feedback pole-
placement in which numerical algorithms were employed to stabilize the
system. In [24] and [35] the real part of the least stable eigenvalue
of the closed loop system was minimized by two different methods and in
(23] the eigenvalues of the closed loop system were constrained to lie in
a prescribed region of the complex plane.

The model is given by X = Ax+Bu, y=Cx where A,B,C are given in
Table 4.1.1. |

As a preliminary analysis the possibility of stabilizing the
system by output feedback was considered. In both [23] and [24] the real
part of the least stable eigenvalue was required to be less than ~0.07, and
this resulted in a damping ratio® of less than 0.02 (n= 89°). Relaxing
the requirement that all the eigenvalues of the closed loop system lie to
the left of 0=-0.07, and attempting instead to increase the damping ratio,
the results given in Table 4.1.2 were obtained using the pole~placement
subroutine of the compensator design software. The damping ratio has been

increased to 0.1 (n= 840) while the least stable eigenvalue has been shifted

*The damping ratio of a stable matrix A is here taken to mean the
smallest damping ratio of all the complex eigenvalues of
A: &= min {-a/vag%+y4}. The associated angle n==cos'l£ is measured
o+juEa (A)
from the negative real axis.

Db, 2 i

il ks e o

i

imadion
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Table 4.1.1. System matrices for the Saturn V booster model
The model is x= Ax+Bu, y=Cx
0 1 0 0 0 0 0 [ 0]
0 0 0.2 -0.65 -0.002 2.6 0 0
-0.014 1]|-0.041 0.0002 -0.015 -~0.033 0 0
A= 0 0 0 0 1 0 0 B=|0
0 0 0 -45.0 -0.13 255.0 0 0
0 0 0 0 0 0 1 0
| O 0 0 0 0 ~50.0 -10.0 L1
C = 1 @ l ¢ 0 O 0 ¢
0 110 0 O O 0
Table 4.1.2. Comparison of static output feedback compensator
designs for the Saturn V boosters Solution using
Here F = A~BKC
Solution using
Sirensa and Choi Miller, et. al. PPL subroutine
K (-20.31, -16.56) (-26.68,-16.27) (-152.541,-42.623)
1. (-4.841, 5.433) (-4.823, 5.401) (-4.340, 6.018)
2. (-4.841,-5.433) (-4.823,-5.401) (-4.340,-6.018)
3. (-0.125, 0.497) (-0.118, 0.642) (-0.471, 4.683)
6(F) 4. (-0.125,-0.497) (-0.118,-0.642) (-0. 471 ~-4.683)
5. (-0.098, © ) (-0.105, 6.204) (-0.250, 2.400)
6. (-0.070, 6.204) (-0.105,-6.204) (-0.250,-2.400)
7. (~0.070,-6.204) (~-0.078, 0 ) (-0.050, 0 )
£ 0.0113 0.0169 0.1001
n 89° 890 84°




to -0.05. The gains required to achieve this solution are large given
the slight improvement in the pattern of the closed loop spectrum over
the solutions of [23] and {24].
In view of these results a linear quadratic regulator problem
was formulated with the expectation that a low order compensator would be
required to satisfactorily shape the dynamics of the final closed loop
system. Solving the state feedback regulator problem with Q=<1CTC and R=1
for a few values of o indicated that unless o were of the order of 103 or
104, the optimal solution would possess a complex pair with a small damping
ratio, and this led to the selection of - - ;/
T 500 0
R = 0.01 Q=2C c. (4.1.1)
0 100

The solution of the state feedback regulator problem for this choice of
Q and R is given in Tables 4.1.3 and 4.1.4. In comparison to the minimum
energy solution (G=0, R=1) which simply reflects the unstable eigenvalues
about the imaginary axis, this optimal regulator has perturbed the eigen-

values at -5+j5 and -0.014 only slightly to A AZ, and X7, whereas the

1’
pair -0.065+ j6.708 has been moved to the pair AS’AG and the two real
eigenvalues -0.475 and -0.420 have formed a complex pair and moved to
A3,A4 (see Figure 4.1.1). It is noted that the least stable eigenvalue is
very near an invariant zero of the system.*

Since r=2 and the optimal spectrum of F contains three complex

pairs of eigenvalues there are only three choices for Ar‘ Computing the

*
A survey of the literature on zeros of linear time-invariant

multivariable systems is available in [36].
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Table 4.1.3. Open loop eigenvalues, optimal closed loop eigenvalues,
and invariant zeros of the Saturn V booster

%
Open Loop Spectrum Closed Loop Spectrum Invariant Zeros
* 1. (-5.000, 5.000) (-5.106, 4.483) (-4.327, 0)
) 2. (-5.000,-5.000) (~5.106,-4.483) (-0.0462, 0)
3. (-0.475, 0.000) (-2.305, 7.648) ( 4.401, 0)
l' 4. (-0.065, 6.708) (-2.305,-7.648) .
5. (-0.065,-6.708) (-1.757, 0.820)
s 6. ( 0.014, 0.000) (-1.757,-0.820)
: 7. ( 0.420, 0.000) (-0.046, (0.000)




Table 4.1.4. Optimal state feedback regulator solution

The Riccati solution is Mc =

[620.881  326.193 11.062 -11.812 -4.778 =-40.707 -2.235]
326.188 305.860 23.048 -9.677 ~4.775 -48.934 -2.826
11.061 23.047 10.431 -0.461 -0.384 -4.713 -0.289

-11.812 -9.677 -0.461 0.510 0.140 0.336 -0.013
~-4.778 -4.775 -0.384 0.140 0.082 0.988 0.054
-40.705 -48.933 -4.713 0.335 0.988 18.839 1.158
| -2.235 -2.826 -0.289 -0.013 0.054 1.158 0.082_
E K=R‘1BTMC =
[-223.486 -282.557 -28.919 -1.343 5.370 115.817 8.211] i
t
The closed loop matrix is F = A-BK = '
. [ 0.000 1.000 0.000 0.000 0.000 0.000 0.000 ]
0.000 0.000 0.200 -0.650 -0.002 2.600 0.000 ‘
. -0.014 1.000 -0.041 0.0002 -0.015 -0.033 0.000 é
r 0.000 0.0060 0.000 0.000 1.000 0.000 0.000 :
‘ 0.000 0.000 0.000 -45.000 -0.130 255.000 0.000 T
0.000 0.000 0.000 0.000 0.000 0.000 1.000 b
| 223.486  282.557  28.919 1.343 -5.370 -165.817 -18.211 | : ;
The optimal eigenvectors are: 3
 0.001] [ 0.001] [-0.002] [ 0.000] [-0.021] 0.000 ‘
-0.010 -0.003 0.004 -0.012 0.037 -0.018 ‘
v -| 0.000 -0.001 v - 0.000 0.000 v - =0.024 0.005
Al,AZ 0.026) +j1 0.138 A3,A4 -0.122} +j | -0.014 AS’A6 0.204| +j | -0.401
-0.755 -0.587 0.388 -0.903 -0.030 0.872
’ 0.030 0.023 0.002 0.017 0.033 -0.076
t-0.253 L. 0.018] _-0.134 L-0.0Z% L 0.004) L 0.162
[-0.000]
0.000
0.685
",\7 *1! 0.717
-0.033
0.126
L-0.006|
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Figure 4.1.1., Open loop and optimal closed loop spectra and invariant zeros
of the Saturn V booster
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matrices A1 and their spectra shows that in each case Al is unstable and

so as expected a compensator will be required to stabilize the system.

The data for this first stage of the design are given in Table 4.1.5, and
Figure 4.1.2. fn all th;ee cases it should be noted that there is an
eigenvalue very near the invariant zero at -0.046. It is therefore expected
that in designing a dynamic compensator the spectrum of Ar will "likely"
contain an eigenvalue near this location. Hence Ap should not contain
A7=-—0.046 but rather eigenvalues which depart more from their optimal
locations under static output feedback (see Figure 4.1.2).

This was confirmed as it was not possible to design a first order
compensator by stabilizing Ar for any of the orderings (Ak’xk+l’l7)’
k=1,3,5. Using two columns of Bo however, Ar was easily stabilized for
several choices of Ar and Ap. Two compensators based on the orderings
11A2X5A6 and A3A4A5A6 will be discussed here. 1In both designs the spectrum
of Ar was shaped in accordance with two criteria: first that as many eigen-
values as possible be placed at the locations of the n~r-p unretained
optimal eigenvalues, and second that the damping ratio of Ao (as defined
above) be no less than that of the optimal solution. In view of the latter
requirement it is noted that the damping ratio of the optimal closed loop
system is £=0,289 (7= 73°).

Retaining xlxz and ordering the remaining eigenvalues
A5A6A7A3A4, with the real eigenvalue X7 placed third in anticipation of
designing either a second or a third order compensator, the pole~placement
subroutine was used to place the spectrum of Ar' Since the first row of A12

is all zeros it was necessary to introduce P=-§T, T=(0,1) and to solve

the pole-placement problem
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Based on retention of Al,AZ:

The spectrum of Al is:

-0.
-0.

v wh -
.« e e 8 e
PN SN NN N

-0.

194,
194,
065,

.247,
w247,

.018
.624
.190
.371
.632

7.095)
-7.095)
0.000)
0.729)
-0.729)
-0.073 -0.
5.278 1
-15.133 -0.
-1.205 -0.
21.555 0.

Based on retention of A3,X4:

The spectrum of A, is:

( -4.
( -4.
( -0.
( 2.
( 2.

w oo
« o & s @

-0.
-0.

A, =| -14.
11 o
-o0.

767,
767,
047,
010,
010,

037
250
903
280
388

Based on retention of AS,A6:

The spectrum of A1 is:

-5.
-5.
-0.
2.
2.

V& W
« * s =
NN NS

0.

=4.

A = 110.
-0.

1.

565,
565,
050,
261,
261,

016
A16
076
880
869

-0.771
128.864

N, = -374.840
14,231

85.580

015 0.260
.016 -21.111
038 135.534
004 4.820

066 =136.220

1
3.087) -0.168
-3.087) 80.281
0.000) N = |-79-796
2.973) ) -4.519
-2.973) 89.397
-0.014 =-0.015 0.022
0.813 1.003  -3.252
3.436 0.019  61.257
-0.911 -0.003 3.643
1.260 0.004 -55.041
8.109) 0.630
-8.109) 30,743
0.000) N =|-86.803
4.187) ° 6.124
-4.187) -16.553
-0.184 -~0.016 0.704
15.002 1.046 -60.009
-77.746 ~0.231  385.985
2.861 0.009 -11.443
-6.075 =~0.019 -25.702

-0.
23.
-50.
.401
-9.

O OOO

.021 ]

.516
.401

.000 ]
.000

.000

.000

.000-1
.000
.000

Data for various choices of Ar

.113
.119
.949
.854
.161

.000]
.000
.000
.000
.000 _

.251

.939 J

.000

.000 |

284 ]
080
379

346

.000
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5x5
Ar A1+B°§(TA12)ER . (4.1.2)

Thus at the ith stage of the algorithm only i poles could be arbitrarily
assigned. Since at least two columns of Bo were to be used, at the first
stage a real pole was arbitrarily placed at -2 using Procedure 1. Then
using Procedure 2 a complex pair was placed at -1 + j3.5 (£=0.275,
n= 740) resulting in another complex pair at -1.625+35.41 (£=0.288,
n= 730) and a real pole very near A7 (and the invariant zero at -0.0462).
Attempts at placing poles near X3,k4 resulted in an unstable Ar' In view
of the criteria above, this solution of the pole-placement problem was
satisfactory and the degree of the required compensator taken to be p=2.
Data for the pole-placement problem is given in Table 4.1.6.

The parameters of the compensator are:

- =[ -6.258 0.315] K =

-24.226 -2.602 [-1.221  1.959]

(4.1.3)
-267.925 -31.216 _
D [_1212.909 _59.339] Ky-[—36.437 -30.255]
and the total closed loop matrix is
[ -6.258 0.315| -267.925 -31.216 0.000 0.000
-24.226 -2.602 | -1212.909 -59.339 0.000 0.000
0.000 0.000 0.000 1.000 0.000 0.000
0.000 0.000 0.000 0.000 0.200 -0.650
Ac= 0.000 0.000 ~-0.014 1.000 -0.041 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 -45.000
0.000 0.000 0.000 0.000 0.000 0.000
| 1.221 -1.959 36.437  30.255 0.000 0.000
0.000  0.000  0.000]
0.000 0.000 0.000
- 0.000 0.000 0.000
-0.002 2.600 0.000
-0.015 -0.033 0.000 (4.1.4)

1.000 0.000 0.000
-0.130 255.000 0.000
0.000 0.000 1.000
0.000 -50.000 -10.000.

e ﬁ\rj‘nﬁ‘ﬂ‘ﬁ R R ——— e — T e

ey
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Table 4.1.6. Data for pole-placement problem
based on ordering }‘1’)“2’)\5’A'6

[ 3.029
£, = [1.000] fz'v[zl.oss]

_[0.000 4.651
P=10.000 21.055

g, = [1.621] g, =[1.000]

1 The spectrum of A2 is: The spectrum of A3=Ar is:
v 1. (-2.000, 0.000) 1. (-1.625, 5.407)
) 2. (-0.039, 0.000) 2. (-1.625, 5.407)
Ny 3. (-0.038, 7.130) 3. (-1.000, 3.500)
N 4. (-0.038, -7.130) 4. (-1.000, -3.500)
5. ( 1.107, 0.000) 5. (-0.055, 0.000)

3 -0.036  0.003
1 2.624 -0.279
¢ B =|-9.639 1.742
. 0.402 -0.111
- 0.585 0.731

Ay=Ay+b fig (TA ) =

E -0.030 -0.035 -0.015 0.108  0.000
-0.773 2.512 1.008 -10.045  0.000
-12.316 -4.974 -0.007  94.898  0.000
0.501 -1.629 -0.005 6.516  1.000
-6.443 20.939 0.064 -133.755 =-10.000
A =Ay=ay+[bb,]f g, TA ) =
-0.038 -0.009 -0.015 0.003  0.000
~0.360 1.170 1.004  -4.679  0.000
-10.818 -9.841 -0.022 114.363  0.000
0.276 -0.896 -0.003 3.586  1.000 ]
-3.009 9.781 0.030 -89.123 -10.000 H
r




Referring to Table 4.1.7 and Figure 4.1.3 it is verified that the compen-

sated system has retained from the optimal state regulator a four
dimensional subspac: spanned by the eigenvectors corresponding to Al’AZ’AS’

A6. Also the compensator is open loop stable.

Recalling that H, D, and Kz are determined only up to a similarity
transformation under Wp, the pair (D,Kz) may be balanced by introducing

fawaw?! D=wp, R =kwl (4.1.5)
z pop P o z zp

; =1
For example, if Wp 25 I2x2 then Ho and Ky are unchanged and

5= [-10.717 -1.249]

-48.516 =2.374 KZ = [-30-525 48.975] (4.1.6)

For purposes of comparison a design is given based on the ordering

A3,A4,A5,A6,A7,A1,A2. The pole-placement problem was solved by first

placing a pole arbitrarily at -1.0, and then in the second stage of the
algorithm, placing a complex pair at -1.0+ 3j3.0. This resulted in a
spectrum for Ar which met the criteria given before, and again placed a real

pole near A The data for the pole-placement problem are given in Table

7°
4.1.8. The parameters of the resultant compensator are:

0 o= [ -30.530  4.925
(o]

-68.884 8.858] Kz = [ -15.881 3.919]

(4.1.7)
-970.743 224.189
D [_2204.778 582.655] K, = [-544.318 76.387].
1 .
Again the matrices Do and Kz may be scaled to give (Wp - szz).
A -80.895 18.682 5
D° [ -183.732 48.555] Kz {-190.572 47.028]. (4.1.8)

Comparing the two compensator designs it is seen that that based on

retention of xlxzxsxs resulted in feedback gains more than an order of

magnitude smaller than those obtained in the design based on retention of
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Table 4.1.7. Spectra of closed loop compensated Saturn V
booster and of open loop compensator

-

Design based on retention

Design based on retention

of A1A2A5A6 of A3A4A5A6
1. (~5.106, 4.483) : xl (-18.750, 0.000)
2. (~5.106, -4.483) : Xz ( -2.908, 0.000)
3. (-1.757, 0.820) : XS ( -2.305, 7.648) : A3
4. (~1.757, -0.820) : Xg ( -2.305, -7.648) : X,
o(Ac) 5. (-1.625, 5.407) ( -1.757, 0.820) : g
6. (-1.625, -5.407) ( -1.757, -0.820) : x6
7. (-1.000, 3.500) ( -1.000, 3.000)
8. (-1.000, -3.500) ( -1.000, -3.000)
9, (-0.055, 0.000) ( -0.061, 0.000)
o(H) 1. (-4.430, 2.070) (-17.808, 0.000)
o’ 2. (-4.430, -2.070) ( -3.863, 0.000)
PRIEREAE T S T R S




Figure 4.1.3.
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Table 4.1.8. Data for pole-placement problem based on ordering

Agshgahsag

£, = [ 1.000] g, = [4.766]
0.000 14.548]

p=
T 9.781 . [o.ooo 33.041
£, = [33.041] g, = [1.000]

The spectrum of A2 is: The spectrum of A3==Ar is:
1. ( -9.739, 0.000) 1. (-18.750, 0.000)

Y 2. ( -1.000, 0.000) 2, ( -2.,908, 0.000)

. 3. ( -0.305, 3.496) 3. ( -1.000, 3.000)
4. ( -0.305, -3.496) 4., ( -1.000, -3.000)

. 5. ( -0.060, 0.000) 5. ( -0.061, 0.000)

, -0.027  0.005
&4 1.852  -0.392
: B = |-4.468  2.197
-0.010 -0.100
1.819  0.181

[ -0.062 0.069 -0.015 -0.307 0.000 ]
1.515 -4.925 0.985 19.701 0.000
A2 =1-19.162 17.276 0.062 5.894 0.000
0.271 -0.879 -0.003 3.517 1.000

1.346 -4.375 -0.013 -32.499 -10.000 |

[ -0.083 0.135 -0.015 -0.574 0.000 ]
2.547 -8.277 0.975 33.107 0.000
A3 =|-13.386 -1.494 0.004 80.976 0.000
-0.413 1.341 0.004 -5.363 1.000

| 6.102 -19.831 -0.061 29.324 -10.000_]
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A3A4A5A6. Recall that in comparing the optimal state feedback regulator

with the minimum energy solution, it was noted that the pair Allz was

slightly perturbed from -5+ j5 whereas the pair A3A4 arose from two real
poles near ~0.45 forming a complex pair and leaving the real axis. It

may be inferred that this has been reflected in the second design by a
large expenditure of energy to retain the pair A3A4. Apparently the first
design is preferable.

It should also be noted that in all of the static and dynamic
designs, including the unstable designs based on a zero order compensator,
there is a real pole near the invariant zero at -0.0462. This is con-
sistent with the fact that under high gain output feedback a number of the
poles of the closed loop system tend to the finite invariant zeros [36].
It is interesting to note that the system appears to have two widely
separated time scales in the sense that the gains of interest are "high
gain'" relative to the zero at -0.0462, but not relative to the other two
zeros, which do not have any easily discernable influence on the system.

In summary the second order compensator design obtained for the
ordering A1A2A5A6 compares favorably in dimension with the order of the
reduced order observer (n-r=15) and with the bound on the dimension
required for arbitrary placement of ghe spectrum of Ar (n-r-2+1=5).

The compensator is open loop stable, retains a four dimensional invariant

subspace of the optimal state feedback regulator in which there 1s no cost

degradation, requires modest gains, and achieves a damping ratio of

0.275 (n =74°).
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4.2. Fifth Order Example

This is a trivial example illustrating the application of the

design methodology to stabilize systems. Let the system be given by

0 110 0 0 0
=6_ =510 0_0 0 .
x=|"0 010 1T 0|x+|0]u, y=[8 (1)g‘1) g g]i (4.2.1)
0 olo o 1 0
1 o0i0o 0 -1 1
and introduce the permutation of states x=TXx
(4.2.2)

=]

H
OO OO
COOoOO0OH
OO0OOKHO
OHHOO0OO0
HOOOO

to obtain the system X= Ax+ Bu, y= Cx where

5 0 -6 0 0 0
0o 0 0 1 0 0
A=<{ 1 0 0 o0 ol B=lo c=[$ g g 8 g]. (4.2.3)
o 0 0 0 1 0
o 0 1 0 -1 1

In this basis X %q are the state variables of the uncontrollable subsystem
with eigenvalues at -2,-3, while x2,x4,xS are the state variables of the
controllable subsystem with eigenvalues at -1,0,0.

The solution of the state feedback regulator problem with R=1l and
Q=dg(1,5,0,2,0) is given in Tables 4.2.1 and 4.2.2. It is noted that the
optimal controllable eigenvectors have the form given in (3.3.16). To
insure the invertibility of Y at most one controllable eigenvector may be
retained in Ar’ and the possible choices are (ol,oz),(ol,kl),(cz,kl).

The spectra of the resulting matrices A, are given in Table 4.2.2. It is

1
noted that the controllable subspectrum of A1 is the same in both the cases
Al- dg(clxl) and Al - dg(czhl) as predicted by the form of the block diagonal

entries of A1 in (3.3.18).
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Table 4.2.1. Solution of gtate feedback regulator for fifth
order example

0.1146 0.0518 0.0817 0.1826 0.1309
0.0518 8.7407 0.5519 6.6400 2.2361
Mc- 0.0817 0.5519 1.0782 1.3728 0.8610
0.1826 6.6400 1.3728 9.3716 3.9090
0.1309 2.2361 0.8610 3.9090 1.9695

K=[ 0.1309 2.2361 0.8610 3.9090 1.9695]

-5.0000 0.0000 -6.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 0.0000

F=| 1.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0060 1.0000
-0.1309 -2.2361 0.1390 -3.9090 -2.9695

The optimal closed loop eigenﬁectors are (see Table 4.2.2)

0.9361 0.8057
0.0170 0.0948
vy ® -0.3120 v, = -0.4028
1 -0.0510 2 {-0.1896
0.1530 0.3791
0.0000 0.0000 0.0000
0.4332 0.3711 0.1866
v, = 0.0000 Vi 0.0000 |+ j| 0.0000
1 | -0.5547 23 | -0.5031 0.2196

0.7104 0.2017 ~0.6968
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Table 4.2.2. Eigenvalues of various matrices of the fifth
order example )

Spectrum of A Spectrum of F
; } 1. (-3.000, 0.000) | 1. (-3.000, 0.000) |: op
| 2. (=2.000, 0.000) 2, (-2.000, 0.000) : dy
‘{. 30 (‘1'000’ 0-000) 30 (—10281, 00000) H )\1
. } 4, ( 0.000, 0.000) 4, (-0.844, 1.061) : A2
EN . 5. ( 0.000, 0.000) 5. (-0.844, -1.016) : A3
b
? Spectrum of AL Spectrum of H,
1. (-3.000, 0.000) | 1. (-2.485, 2.485) i
2 2, (-2.000, 0.000) 2. (-2.485, -2.485)
A 3. (-1.500, 1.500)
A 4. (-1.500, -1.500)
3 5. (-1.281, 0.000)
6. (-0.844, 1.016)
7. (-0.844, -1.016)
j Spectra of possible matrices A }
Eigenvalues retained in Ar Spectrum of A1
1. (-0.702, 0.274)
. (alcz) : 2., (-0.702, -0.274)
i 3. ( 0.404, 0.000)
1. (-2.000, 0.000)
(clkl) : 2, ( 0.140, 0.583)
3. ( 0.140, -0.583)
1. (-3.000, 0.000)
(o,Xl) : 2, ( 0.140, 0.583)
« 3. ( 0.140, -0.583)




Since all three static compensators are unstable, a dynamic com-
pensator is designed.

lable optimal eigenvectors as possible the design is based on the ordering

AL ALALO

(052125249,)

The reduced pole-placement problem of (3.3.19) is solved in two

stages.

spectrum of F, the choice of poles to assign is arbitrary and taken to be

~1.5+31.5.

Procedure 1, and at the second stage the complex pair is assigned using

Procedure 2,
4.2.3.

compensator are:

(The ordering (o

1A1X2A3o

second order compensator will be required since (AZ,A3) is a complex pair.

Consistent with the desire to retain as many control-

Since the final closed loop spectrum will retain the entire optimal

At the first stage a pole is arbitrarily placed at 0.0 using

The data for this pole-placement problem are given in Table

In the notation of (3.3.21),(3.3.22) the parameters of the resultant

4C o[ ~0-3698 1.2551] DE_[-0.2332] D4:_[-1.2791]
o L-8.4828 -4.5997 o L 0.0830 o | 20.1197
[0 0.0000  0.0000 N o -0.5000 o.oooo]
N = =|-1.2453 -0.1537 | N_=| ° = | 2D. .
P In®| {-0.7261 -1.1634| T |n., N© 0.2777 | 2.5000
L "p 21 Ny

KS=[-6.2978
Z
s

-2.8921]

2) would serve equally well.) A

KS = [-0.0835) x;- [14.9777]. (4.2.4) |
In the original basis the total closed loop matrix is
-0.3698 1.2551} O -0.2332 -1.2791! 0 O]
-8.4828 -4.5997! 0. 0.0830 20.1197 ! 0 0
0 0 0 1 0 0 0
A, =| 0 0 -6 =5 0 0 0 (4.2.5)
0 0 0 0 0 1 0 ,
0 0 0 0 0 0 1 i
| 6.2978 2.8921] 1 0.0835 -14.9777 0 -1




Table 4.2.3. Data

Data for full

for pole-placement problem for fifth order example

problem (see equation (3.3.19)):

The spectrum of A2 is:

1. (0.000, 0.000) 1. (~1.500, 1.500)
2. (0.304, 0.000) 2.

[-0.5000 | -0.0000 ~ 0.0000 _0.0000
N =|-0.0846 | -1.2805 B, =~|-0.0279  0.4586
| 0.2777 1 1.6398 | -0.4069 -1.0028
[-3,0000 | i
0.0000 | 17.1739
A, =|-0.5078 | 1.2805  1.0000 P=| 00000 -6.1098
| 2.6660 | -1.6398 -1.0000 - v .
A, O _ [-e 0 o}
_A32 Ay, ol 1 o
% ¥ Data for reduced problem:
1]
- . 18.0003
£, = [ 1.0000] fzv[_6.1098] j
g, = [-0.826] g, = [1.000]
A = [ 1.3036  1.0000 A =] ~2:0000  1.0000
2 -1.3036 -1.0000 3 [ -2.5000 -1.0000

The spectrum of A3 is:

(-1.500, -1.500)
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This compensator retains all the optimal eigenvalues of the state regulator

and is open loop stable.

4.3. Twelfth Order Nuclear Reactor Model

In this example a single input, three output, twelfth order
model of a nuclear reactor is considered. In a preliminary analysis the
system structure of the model will be discussed and the output feedback
pole-placement problem solved, and then a linear quadratic regulator problem
will be defined on the basis of which both a static and a first order

dynamic compensator design will be given.

The model is taken from [24] and referring to Table 4.3.1 is

given by
x A 0 X 0 y C 0 X
41 . 1, w, | t|=| 1 Y. .3
%) Ay A %] B2 Y2 0 G ll*

The system consists of a seventh order uncontrollable subsystem A11 driving

a fifth order controllable subsystem AZZ' The eigenvalues of these two

systems will be denoted {°1}I-1 and {Ai}i=1 respectively and are given in

Table 4.3.2 and Figure 4.3.1. The observability structure of the system

may be obtained by inspection of the eigenvectors given in Table 4.3.3:

a) The uncontrollable eigenvalues (01,06) are also unobservable.

b) The first row of C observes a fifth order uncontrollable subsystem
with eigenvalues (02,3,04’5,07).

c¢) The second row of C observes a first order controllable subsystem

with a zero eigenvalue.




Table 4.3.1.

System matrices for the nuclear reactor model

A, 0 \
The mcdel is x = 11 % +

1
u, y = x where:
5,) 0

0.000 0.000 0.000}

0.4044  0.000 0.000

0.01818 0.000

l’ﬁ'ﬂ», & e

-

0.000  0.4044  0.000
0.000  0.000  0.4545
-0.5363 0.000  0.000
0.4545 -0.5363 0.000
0.150  0.000 -0.150_
0.000  0.000  0.000
75.000  0.000  0.000
0.000  0.000  0.000

0.000 0.000 0.000
0.000 0.000 0.000

[~NeRoNeNa)

. W

0.000
0.621
0.000
0.000

-0.621 |

[eNeNaNaNol

¢, = [0000001]

10000 ]

01000

[=NeNeNol

» ——y

R §
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Table 4.3.2. Open and closed loop eigenvalues of the nuclear reactor model

The uncontrollable and controllable eigenvalues of A are the
The eigenvalues of
the optimal state feedback regulator are those of Aj; and Fjp,.
The eigenvalues of the final compensated system are those of
A); together with the controllable eigenvalues of A..

eigenvalues of A

and Ay, respectively.

Spectrum of A11 (oi)

Spectrum of A22 (Ai)

Spectrum of F22 (Ai)

.664,  0.000)
.631, 0.195)
.631, -0.195)
.379, 0.034)
.379, -0.034)
.277,  0.000)
.0112, 0.000)

’\A/\ll'\f\/\/\
[eNeoNeNeNoNoNe

~SNounmbswNh e

1. (-75.502, 0.000)
2. ( -0.446, 0.000)
3. (-0.0476, 0.000)
4. ( 0.000 , 0,000)
5. ( 0.000 , 0.000)

v wN e
e o o o o

(~75.197,  0.000)
(~13.051, 12.119)
(~13.051, -12.119)
( -0.399, 0.000)
(~-0.034, 0.000)

Controllable eigen-
values of A,

Open loop spectrum
of Hy-

75.197, 0.000)
13.051, 12.119)
13.051,-12.119)
-7.000, 0.000)
-0.408, 0.000)

(-
(-
(-
(
(
( -0.034, 0.000)

[ WV P NV SN )

1. (-76.132, 0)
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a See Inset
A ; } } 0~
60 -40 -20 T
A
+-20
Inseto Loo
o—+ o{f -0—
-06 © -0.2
o +-0.2

© Uncontroliable Eigenvalues of A
< Controliable Eigenvalues of A

a Controtlable, Optimal Eigenvalues Not
Retained in o(A)

a Controliable, Optimal Eigenvalues
Retained in o(A¢)

¢ Remaining Controllable Eigenvalues of A
(the Controllable Eigenvalues of A,)

v Open Loop Eigenvaiues of the Compensator H,
FP-6537

Figure 4.3.1. Eigenvalues of the nuclear reactor model
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Table 4.3.3. Open loop eigenvectors of the nuclear reactor model

The eigenvectors corresponding to controllable eigenvalues

of A22 are (see Table 4.3.2 for the definition of Ai,oi):
” 0.0000 ] 0.0000 | ™ 0.0000 ] T 0.0000 ]
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000
o | 0.0000 { | 0.0000 0.0000 | _  _| 0.0000
) A 0.0000 A, | _0.0000 Ay 0.0000 A, 0.0000
: 0.0000 0.0000 0.0000 ~0.0000
. -0.8146 0.0027 0.0048 ~-0.0077
0.0267 -0.0161 -0.8179 -0.5774
0.2813 -0.7003 0.4205 ~-0.5774
* | 0.5066 | _ 0.7137 | 0.3927] |-0.5773
- The eigenvectors corresponding to uncontrollable eigenvalues
- of A are:
N 11
® _ _ _ ;
: ~0.0000 ] 0.0071 ] 0.0020
0.0000 0.0029 -0.0123
-0.8417 -0.0210 -0.0041
0.0000 -0.0049 0.0023
-0.0000 0.0043 0.0082
v = | 0.33991 O o _l 0.0137 3 -0.0078
. o -0.0000 6, 0, |=0.0003 | = -0.0027
o 0.0000 0.0000 0.0000
-0.0000 0.0039 0.0007
) 0.0000 -0.0139 -0.0072
b -0.0000 -0.2167 -0.2075
L | 0.0000 | | 0.1087] L-0.9470.
{
E T 0.0550 | -0.0453 [-0.0000 ] 0.0003 |
| -0.0398 -0.0189 -0.0000 0.0003
! -0.0001 0.0272 0.9537 0.0003
0.0072 0.0018 0.0000 0.0003
-0.0009 -0.0045 0.0000 0.0003
4 v .y = —0-0023 4 0.0017 | _ | 0.3007) 0.0003
0,’ o |_0.0001 |= 0.0030 o 0.0000 o, | _0.0003
0.0000 0.0000 0.0000 0.0000
-0.0003 -0.0017 0.0000 -0.0064
0.0008 0.0122 -0.0000 -0.7223 ;
b -0.5548 0.7594 0.0000 -0.4926
L-0.0966 | | -0.3133 ] | -0.0000 | -0.4853
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: d) The third row of C observes a tenth order system consisting of two
fifth order controllable and uncontrollable subsystems with eigen-

values (A A4,A5) and (02’3,04’5,07) respectively.

1°%2,3°
Since output feedback only affects the eigenvalues of the con-
trollable and observable subsystem, a preliminary analysis of the pole-

placement problem under static output feedback compensation may be carried

out on the controllable and observable triple (A
1

22,B2,C2) under feedback

u=—(k2k (Here K= (kl,kz,kB)ER3>< .) When the linear quadratic

3)C2.
: regulator problem is defined, however, it will not be possible to exploit
L 1}

- the uncontrollability of A11

- since uncontrollable eigenvectors are not invariant under feedback, and are

to reduce the dimensionality of the system

shaped in accordance with the selected cost structure (Q,R). It will then

¢ be advantageous to retain the feedback gain k, through C

1 1
The matrices of the subsystem (AZZ’BZ’CZ) are given by:

4 r - -

0 0 o o0 o (1 :
Y -(81+82+83) 4 e, o, 0
A =10 8 -Q 0 B,={0 C=I:10000}
22 1 1 2 2701000 ‘
0 By 0 0 -] | 0]
al = (0.033 Bl = 2.475 (4.3.2)
a2 = 0.346 BZ = 25.95
a3 = (0.621 83 = 46.57
a1+a2+a3 = ] vy = 600.0

and have the controllability canonic form :
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0 1 o0 o0 O 0
. 0O o 1 o0 O R 0 R 0 a, a; a,
A22=0 o 0 1 o0 Bz=0 C2=6 .
0o 0 0 o0 1 0 vy
_0 0 -a, -a, -a, 11
§ = 4.2543 (4.3.3)
e = 148.066
a, = 75.995
ay = 37.2614
a, = 1.60241
from which the open loop characteristic equation is
_ 45 4 3 2
po(x) = A7 + a4A + a3A + aZA . (4.3.4)

Under output feedback u==-(k2 k3)C2 the closed loop characteristic equation
is
p (A) = A% + (kq+a )\ + (k,a,+yk,*a )A + (k,a+ky+a )2
c 274 274 77373 273 73" 2
+ (k2a2+k3e)A + k36. (4.3.5)
Before investigating the root locus of this equation it is of
interest to determine if the system has any invariant zeros. Since this
is the controllable and observable subsystem, the invariant zeros may be

determined as the roots of the greatest common divisor of all the minors of

full order of the system matrix

|

¥
-- == - (4.3.6)
' 7%6

or equivalently in this case as the intersection of the invariant zeros of

the two square systems [35]

A..-\I.' -B A,,-AL' -B
{_22_ iy _2_] , [-22. _2] (6.3.7)
10000 , O 01000 ' O

S
e i T S e
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The zeros of the first system are the distinct eigenvalues of A22:

(A1A2A3A4) and those of t":ie second system are the parameters: (a1a2a3).

[ SR

Since these two sets are disjoint it follows that the controllable and

] observable subsystem has no invariant zeros.

As the closed loop characteristic equation is a function of the

i two parameters k2’k3 a conventional root locus plot may be replaced with :

{ ) a graph of those values of gain (k2k3) for which the eigenvalues of ?
;:; A22—B2(k2k3)c2 lie in prescribed regions of the complex plane. This will
E be done here for the stability region (the left half plane) and for the
region to the left of tﬁe hyperbola o= Vw2 +a having as assymptopes
the constant damping lines o= +w.
:é’ As the number of assignable eigenvalues is two, these may
momentarily be denoted -s and -t and the closed loop characteristic equation
written

2

3
pc(k) = (A+s) (M+t) (A +h2A +hlk+ho). (4.3.8)

Equating (4.3.5) and (4.3.8) gives the linear system of equations X[:]='Y

0 -8l st 0 k, (VI
R |
—a2 -€ s+t st 0 -Eﬁ. . 9 .
-a, -y : 1 s+t st h0 = a, (4.3.9)
-8, =Y | 0 1 s+t hl a3-st
-1 ol O 0 1 h2 aa-(s+t)

which has a solution for all values of s,t for which |X|#0. (Compare
equation (1.35).) The boundary of the region of stabilizing gains may be
found as the parameterized solution (kz,k3)- (kz(s,t),k3(s,t)) under the

constraints

]
1
i
i
1
{
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a) a real pole crosses the imaginary axis: s=0, t£t#20

b) a complex pair crosses the imaginary axis: s+t=0, st=w2, w# 0.
Similarly the boundary of the region to the.left of the hyperbola
o= v’m2+a2 (a=.030, A=-0+jw) is the solution under the constraints

a) a real pole crosses the line ¢=0.03: s=0.03, t>0.03

b) a complex pair crosses the hyperbola: s+t= 20, st=02+w2, o= .03,
A graph of these two regions is shown in Figure 4.3.2, and suggests that
a static design for the output feedback regulator problem may be found
satisfactory. It should be noted that placing the eigenvalues of A22 to
the left of the hyperbola has required the gain k2 to be roughly an order

of magnitude larger than the gain k Recalling that the third row of C

3°

observed the entire subsystem A, whereas the second row only observed a

22
one dimensional generalized eigenvector of A4,5=0, this suggests that in
designing a static compensator for the linear quadratic regulator the
observability properties of the system may be reflected in disparate values
for the gains k2 and k3.

A linear quadratic regulator problem is now defined with

Q = R=1 = dg[1,1,a (4.3.10)

0, 1°%22%3]-

Only the states of the controllable subsystem have been penalized, but
since Alza‘ 0, the optimal solution shapes the eigenvectors of the uncon-
trollable eigenvalues and it is not possible to exploit the uncontrol-

*
lability of All to reduce the regulator problem to one for pair (AZZ’BZ)'

*

It is true that there is a two dimensional subsystem with eigen-
values (0,,0,) which could be removed to reduce the dimensionality of the
problem from twelve to ten, but this does not seem worthwhile.
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P

N
N "‘\Q\‘\‘\ \\\\
Nl
g 20 40 ka

L -2

== A Real Pole Crossing the Imaginary Axis
—-=— A Complex Pair Crossing the Imaginary Axis
——= A Real Pole Crossing the Hyperbola o =/W2+{03)2
—— A Complex Pair Crossing the Hyperbola o =/w2+{.03)2
& Suboptimal Pair Based on Retention of the Complex
Pair A2,3 of the Optimal Feedback Regulator

FP-6939

Figure 4.3,2, Stability regions for the nuclear reactor model
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This uncontrollability will prove useful however, in analyzing the»pole-
placement problem for the triple (Al’BO’AIZ)'

The solution to the regulator problem is given in Table 4.3.4,
and the resultant optimal eigenvectors are given in Table 4.3.5.
Qualitatively, the optimal solution has moved the double pole at the origin
to the complex pair =13+ j12 while only slightly perturbing the remaining
three real poles, suggesting that an output feedback design should concen-
trate on retaining this complex pair. Examination of the eigenvectors of
F in Table 4.3.5 shows that there are severe restrictions on the permissible
choices of Ar' Since Ar must satisfy rank(CVAr)= 3 the choices may include
at most two eigenvalues of F,,6 and are: (X10203),(Aloacs),(kzk3o7)

22

(A40203),(A40405),(A1 Aa 07). (Those involving AS are omitted as the

eigenvector corresponding to A, is nearly in the null space of C.) Since

5
it is desired to retain as many optimal eigenvectors as possible,a design

2A307) with the expectation that if a compen-

sator is used, additionally one or more of XI’AA’AS may be retained.

is based on retention of (A

Based on this choice of Ar and under the permutation of states

0 I3 0
T= I6 0 0 (4.3.11)
0 0 I

bringing C to the form [I 0}, the resulting matrices Al’No’Bo’AIZ are

given in Table 4.3.6. The spectrum of A1 consists of the uncontrollable
eigenvalues (01’02’03’04’05’06) together with three controllable eigenvalues
located at -6.066, -0.407, -0.034. Thus the system is stable as may have

been anticipated from the preliminary output feedback analysis and the

corresponding gain K= (-4.502,-43.385,6.249) lies within the region of

Figure 4.3.2.
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25.7364 0.5511 0.0191 0.2980 0.6757]

Table 4.3.4. Optimal state feedback regulator solution
0.0000 0.0002 O 0.0008 0.0009 O 0.0024
0.0002 0.0047 O 0.0034 -0.0348 0 0.0115
0.0000 -0.0000 O -0.0000 ©0.0000 O 0.0000
0.0008 0.0034 O 0.0214 0.0281 0 0.0521
0.0009 -0.0348 O 0.0281 0.4209 O 0.0552

Mc= 0.0000 -0.0000 O -0.0000 0.0000 O 0.0000
0.0024 0.0115 O 0.0521 0.0552 0 0.1580
0.0000 -0.3064 O 0.0568 3.1448 0 0.0001

-0.0000 -0.0069 O 0.0001 0.0690 0O -0.0000
0.0000 -0.0002 O 0.0000 0.0024 O 0.0001
-0.0000 -0.0037 O 0.000L 0.0373 0 -0.0000
| -0.0000 -0.0084 O 0.0001 0.0846 0 -0.0001

0.0000 -0.0000 0.0000 -0.0000 -0.0000

-0.3064 -0.0069 -0.0002 -0.0037 -0.0084

0.0000 0.0000 0.0000 0.0000 0.0000

0.0568 0.0001 (0.0000 0.0001 0.0001

3.1448 0.0690 0.0024 0.0373 0.0846

0.0000 0.0000 0.0000 0.0000 0.0000

0.0001 -0.0000 0.0001 -0.0000 -0.0001

25.7364 0.5511 0.0191 0.2980 0.6757

0.5511 0.0271 0.0008 0.0126 0.0291

0.0191 0.0008 0.4953 -0.0132 -0.0175

0.2980 0.0126 -0.0132 0.3843 -~0.1897

0.6757 0.0291 -0.0175 -0.1897 0.1615 |
K=[0 -0.30646 0 0.0568 3.1448 0 0.0001]|




Table 4.3.5.
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Optimal eigenvectors of state feedback regulator solution

The eigenvectors corresponding to controllable eigenvalues of F

[oNoNeloNoNole]

o O

-0.
-0.
L-0.

.0000]
.0000
.0000
.0000
.0000
.0000
.0000

.0004
.8135

0268
2820

5080)

vy oYy

.0000
.0000
.0000
.0000
.0000
.0000
. 0000

.0305

[eNe] [cNoNeNoNoNoNo)

.2477
.0429
L4549

[ 0.0000]
0.0000
0.0000

.0000

.0000

.0000

.0000

-0.0141

-0.1862

-0.0045

-0.0535

OO OO

.8246 |

| -0.1062

|
[=NeoNoNaolloNoNeNo)

0.
0.
0.
.0000
.0000
.0000
.0000

.0004
.0019
.0126
.9202
| -0.

0000 ]
0000
0000

3912 ]

COO0OO0OOO0O0

1 [
OCO0OO0OC0CO

The eigenvectors corresponding to uncontrollable eigenvalues of A11 are:

" 0.0000 ]
-0.0000
0.4817
-0.0000
0.0000
-0.5399
0.0000
-0.0000
0.0000
0.0000
0.0000

[ 0.33137
0.3228
-0.2965
-0.0405
0.0516
-0.0116
-0.0327

| -0.0000 J

0.7326
-0.3781
-0.0812

0.0731

0.0035
-0.0298
-0.0071

~0.0024
0.0000
0.0000
0.0000

_-0.0000

-0.0052
0.0000
-0.0000
-0.0000
. 0.0000

-0.2172 © 0.0707 ]
0.1347 0.3648
0.6117 -0.2534
0.0876 -0.1441

-0.2509 ~0.1394

-0.2205 0.4361
0.0521 [+ 3 | _0.0646
0.0330 0.0220
0.0000 -0.0000

-0.0000 0.0000

-0.0000 -0.0000

| -0.0001 | | -0.0001 |
[ 0.00007] [ 0.3678 ]
0.0000 0.3791
0.9537 0.3907
-0.0000 0.3576
0.0000 0.3685
0.3007 0.3799
- | =0.0000 _1_0.3984
o 0.0000 Vo7 ~0.0413
-0.0000 0.0000
0.0000 0.0000
0.0000 0.0000
L -0.0000 . L 0.0000_
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Table 4.3.6. Data for pole-placement problem for the nuclear reactor

model based on retention of AZ,A3,07,A1
0 0 0 0 0.15 0t O 0 0
A,=|0_0_00 0 _05 0 o _ O ]
0 -7.5 0 0 75.0 0 : 0.033 0.346 0.632
™ 0.9232 0.0000 0.0000 [~ 0.0000 T
0.9516 | 0.0000 0.0000 0.0000
0.9808 0.0000 0.0000 0.0000
0.8976 0.0000 0.0000 0.0000
No= 0.9252 ' 0.0000 0.0000 B°= 0.0000
_0.9536_' _ 0.0000_ 0.0000 _0.0000_
-0.4328 y -4.1715 0.3397 0.3014
-4.6563 | -44.8802 3.6811 3.2578
| -8.5479 = -82.3894 6.8002 L. 6.0054 3

-0.4044 0.0000 .0000 0.4044 -0.1385 0.0000
0.0000 -0.4044 .0000  0.0000 0.2617 0.0000
0.0000 0.0000 -0.4044 0.0000 -0.1471  0.4044
0

A, =] 0.0000 0.0818 0.0000 0.4545  -0.6751  0.0000
_0.0000 _-0.0000 _ 0.0818 _ 0.0000 0.3115 _-0.5363
0.0000 ~ 275478 0.0000 ~ 0-0000 ~ -25.4130  0.0000
0.0000 27.6085 0.0000 0.0000 -275.3962  0.0000
| 0.0000 51.0014 ©0.0000 0.0000 -508.7316 0.0000

0
0
0
.0182 -0.0000 0.0000 -0.5363 -0.1346 0.0000
0
0
0

' 0.0000 0.0000 0.0000 |

¢ 0.0000 0.0000 0.0000 ]

| 0.0000 0.0000 0.0000 ;

' 0.0000 0.0000 0.0000

! 0.0000 0.0000 0.0000 ;
1 _0.0000 _ 0.0000 _ 0.0000 :

} =0.0442 T-0.1175 " <0.21i0

1 =0.1215 -1.6197 -2.2860

' ~0.2244 -2.3529 -4.8439
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Qualitatively this output feedback solution retains the eigen-

vectors corresponding to the optimal complex pair 12,l3and places two

eigenvalues (though not their eigenvectors) very near their optimal

locations A4,A5. However it has also shifted the fast eigenvalue of the

system from -75.2 to only -6.066. This suggests trying to design a first

order compensator to additionally retain A, with the expectation that two

1
eigenvalues may still remain near Aa,ls. The data for the pole-placement
problem are given in Table 4.3.6.

Because of the block structure of (Al,BO,AlZ) which clearly
satisfies the requirement that the spectrum of Ar contain the unretained
uncontrollable eigenvalues (01,02,03,q4,05,06), and the fact that only the

third row of A,, observes the controllable subsystem of Al,the pole-placement

12
problem may be replaced with the single-input single-output pole-placement

problem for the triple (A22,B§,Ai§). This problem may then be solved

analytically by transforming to the controllability canonic form:

0 1 0 0
0 0 1 R 0 s [co < czl
—ao -a1 —32 1
ab = 0.083374 ¢y = 0.067455 (4.3.12)
a = 2.6912 c, = 2.1602
a, = 6.5080 c, = 4,8663
The closed loop characteristic equation is

3 2 i
pc(A) AT+ (az-c3p3)A + (al-c1p3)k + (ao—cop3). (4.3.13) ‘o

This gives rise to the root locus {‘

3 2
A +a2A +al)\+a0=p
cA2+cA+c 3

(4.3.14)

2 1" o f‘
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where the roots of the numerator are the controllable eigenvalues of A1 and
the roots of the denominator are -0.0338, -0.4101. This near pole-zero
cancellation confirms the expectation that a first order compensator would
allow retention of Al and yet still keep two eigenvalues very near their
optimal locations A4,k5 without requiring large gains. Analysis of the
root locus shows that the system is stable for p3<]ﬂ235, with two poles very
nearly at -0.41, -0.034 for -e=< p3<l.0. Arbitrarily placing a pole at
-7.0 gives p3==-0.192 and the controllable subspectrum for Ar becomes
-7.0, -0.408, -0.034.

The parameters of the compensator are then:

(o4
HE [-76.132]
Dg = [ -9.186) Dg = [-88.540 -1.103]
c (4.3.15)
K. = [ 5.820]
& = [ =4.502] x; = [-43.385  7.216)
y
and in the original basis the final closed loop system is é% (:)==Ac (:)

where Ac -

-76.132 0.000 0.000 0.000 0.000 0.000 0.000
0.000 | -0.4044 0.000 0.000 0.4044 0.000 0.000
0.000 0.000 -0.4044 0.000 0.000 0.4044 0.000
0.000 0.000 0.000 -0.4044 0.000 0.000 0.4044
0.000 0.01818 0.000 0.000 -0.5363 0.000 0.000
0.000 0.000 0.0818 0.000 0.4545 -0.5363 Cc.000

0.000; 0.000 0.000 0.0818 0.000 0.4545 -0.5363
0.000| 0.000 0.000 0.000 0.000 0.150 0.000
-5.820| 0.000 0.000 0.000 0.000 0.000 0.000
0.000; 0.000 -7.500 0.000 0.000 75.000 0.000
0.0001 0.000 0.000 0.000 0.000 0.000 0.000
0.000| 0.000 0.000 0.000 0.000 0.000 0.000
| 0.000} 0.000 0.000 0.000 0.000 0.000 0.000
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| ~9.186 -88.540 -~1.103 l, 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000. 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.4545 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.000 0.000 (4.3.16)
-0.150 0.000 0.000 0.000 0.000 0.000
. - 4.502 43.385 -~7.216 0.000 0.000 0.000
’ 0.000 | 600.000 -74.995 0.033 0.346 0.621
0.000 0.000 2.475 -0.033 0.000 0.000
0.000 0.000 25.950 0.000 ~0.346 0.000

»

0.000 0.000 46.570 0.000 0.000 -0.621 ]
; Thus by taking into account the eigenvector structure of the
- optimal state feedback regulator solution, the methodology for designing
f regulators has been applied to a nontrivial system having uncontrollable
§3 and unobservable modes. A first order compensator has been constructed

having the property of retaining from the optimal regulator solution a
four dimensional ‘nvariant subspace spanned by eigenvectors corresponding
to three controllable and one uncontrollable optimal eigenvalues, at the

-7 same time placing eigenvalues near all the remaining optimal locationms.

4.4. Two Interconnected Power System Model

This example considers a model of a power system consisting of
two interconnected steam generators. The model, derived in [37], is given
by X~ Ax+Bu, y=Cx, A,B,C defined in Table 4.4.1, and represents a
linearization of the system about an operating point, describing the system
behavior under real power and frequency variations. The state vector has
the physical correspondence:

X1 2%y - valve displacements in areas one and two
xz,x8 - power displacements of high pressure turbines in areas

one and two

!
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Table 4.4.1. System matrices for the two interconnected power
system model

The system is represented as:

2
0 a, A 0 bl 90 ¢
1 s.
where:
-2.0 0 0 0 -4.0 ]
4.75 =~5.0 0 0 0
A = 0 0.16667 -0.16667 0 0
8 0 0 2.0 -2.0 0
0 0.025 0.02333 0.035 -0.1125

a, ={0 0 0 0 0.08333)7

= [0 0 0 0 22.21439]

T

b=(4.0 0 0 0 0]

c=(0 0 0 o0 1]
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X,sX, = power displacements of intermediate pressure turbines in

areas one and two

X, Xy ~ power displacements of low pressure turbines in areas
one and two
XgoXyq = frequency deviations in areas one the two
X - tie-line power flow deviation from area one into area two

and the controls are the set point adjustments in the two areas. It is
assumed that the tie-line power flow and the two frequency deviations are
available for measurement.

Since the system is open loop stable a preliminary analysis of
the static output feedback pole-placement problem may be replaced by an
investigation of the eigenstructure of both the open and closed loop
systems. A clear understanding of this structure will be essential in
applying the design methodology.

The eigenvalues of the open léop matrix may bé classified
according to whether the tie-line power flow variable X is zero in the
corresponding eigenspace. The eigenvector equation for the open loop

matrix is:

A v-ona, = Av
[}

1 v
a,v-aw = alX , Y=|a|, v,wE Rsxl, aERlxl. (4.4.1)
aal+Asw = Aw v
These equations may be rewritten:
or.(2a2 adj(AI—As)al + Adet(AI-AS)) =0 (4.4.23)
(AS-AI)V = aay (4.4.2b)
(AS-AI)w = -aa,. (4.4.2¢)
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If a=0 then there are five solutions:

V.
d,5 d.5 i d_.dd
OHar ¥iHape Wg al> A% T Agvy (4.4.3)
i

If a#0 then (4.4.2a) is a sixth degree polynomial in X and the solution of

(4.4.2) is
Cc
Vi vC
c,6 6 c . i
Dy {wi}i=l’ wi %! [Aj1-A © 3] o ‘
-vy i (4.4.4) @

. d ,c
The numerical values of Ai,ki,W:,Wi,ai

Thus,given any initial condition, the transient response of the

are given in Tables 4.4.2, 4.4.3.

system may be represented as the sum of a coupled and a decoupled response

x(t) = xc(t) + xd(t)
ve c vd d ‘
6 i c ALt 5 i d Ait
x (£) = 2 a, |v,e x, (t) = I 0 |v,e
c i=1 _vg i ’ d i=1| 4 1
L7V ] (4.4.5)
ve vd
X = x(0) = z Yiloy + Iy 0
i=1 c i=1 % vd
i i
The first term xc(c) represents a projection of the system response into 1

a subspace in which the tie-line power flow variable is nonzero (ai#O, x6#0)
and in which the response of the second generator is in exact opposition

to that of the first generator. The second term xd(t) represents the pro-
jection of the response into a subspace in which the tie-line power flow

variable is zero (x6=0) and the two generators operate synchronously. For r

example, consider the case that an initial displacement from the nominal

operating point occurs symmetrically in the two areas. If xi(0)= xi+6(0),

i=1,...,5, x6(0)-0, then the two coupled steam generators evolve with the
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Table 4.4.2. Open loop and optimal closed loop spectra of
power system model

Optimal
Open loop eigenvalues | closed loop eigenvalues
*
1. (-5.028, 0.000) 1. (-9.171, 0.000)
2. (-1.982, 0.101) 2, (-4.994, 0.000)
N A1 3. (-1.982, -0.101) 3. (-1.994, 0.000)
i 4. (-0.166, 0.000) 4, (-0.241, 1.943)
5. (~-0.061, 1.938) 5. (-0.241, -1.943)
* 6. (-0.061, -1..938) 6. (-0.220, 0.000)
>3 1. (-5.032, 0.000) 1. (-9.171, 0.000)
;' d 2. (-1.970, 0.143) 2. (-4.988, 0.000)
Ai 3. (~1.970, -0.143) 3. (-2.001, 0.000)
4. (-0.154, 0.149) 4, (-0.171, 0.093)
5. (-0.154, -0.149) 5. (-0.171, -0.093)

i s S

s S e A AR K




Table 4.4.3. Open loop eigenvectors of the two interconnected power
system model
See Table 4.4.2 for the definition °§ the eigenvalues k;,k:. The
. Vi 4 Vi
eigenvectors have the form ¥, = |a, |, %.=| 0
1 i i ak
Vi Vi -
0.0041 ] 0.2034] [ 0.0463 -0.0027 ]
-0.7062 0.3222 0.0620 -0.0027
0.0242 -0.0292 -0.0073 -0.4507
S -0.0160 -0.2381 0.5329 -0.4914
; 0.0031 0.0003 -0.0054 0.0012
. v1=|=0.0276 | v, 3=|=0.0021 |+§| 0.1107 | 7, =|=0.3326
e -0.0041 -0.203% -0.0463 0.0027
a 0.7062 -0.3222 -0.0620 0.0027
' -0.0242 0.0292 0.0073 0.4507
. 0.0160 0.2380 -0.5329 0.4914
' | -0.0031 | -0.0003! [ 0.0054 ] | -0.0012 |
o -0.0389 0.0497 [-0.0047 7 [ 0.09757] 0.2414
. -0.0162 0.0541 0.7065 0.1702 0.3703
0.0046 0.0016 -0.0242 -0.0129 -0.0353
0.0032 -0.0015 0.0160 -0.5093 0.0730
. e 0.0429 -0.0052 4 |=0.0036 4 d 0.0079 -0.0053
Vg =|=0.1502 1+j| ~0.9794 | 7y =|_0.0000 | 7,4 4=|_0.0000 |+j| 0.0000
. 0.0389 -0.0497 -0.0047 0.0975 0.2414
0.0162 -0.0541 0.7065 0.1702 0.3703
-0.0046 -0.0016 -0.0242 -0.0129 -0.0353
-0.0032 0.0015 0.0160 -0.5092 0.0730
[-0.0429 ] L 0.0052. [ -0.0036 _ L 0.0079. L-0.0053
; [ 0.24347 [-0.2146
: 0.2319 -0.2175
-0.2193 -0.2775
-0.2603 -0.2796
' -0.1203 0.0900
E ¥4, 73 =| Z0.0000 |+1{70.0000
3 0.243% -0.2146
-0.2319 -0.2175
-0.2193 -0.2775
-0.2603 -0.2796 ;
L-0.12031 L 0.0900 o
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dynamics of a single fifth order system. Note that the total system is not
observable from the tie-line power flow variable. If xi(0)=‘-xi+6(0),
i=1l,...,5, then the system evolves in a six dimensional invariant subspace,
the two steam generators operating in exact opposition to each other.

Inspection of the numerical values of Ag,ki in Table 4.4.2 shows
that the eigenvalues of A may also be identified in pairs:

{Ai}— {Ai} two real eigenvalues at ~-5
05,53 - {Ag,/\g} two complex pairs at ~ -2+ j0.1
{Ag,kg}-z{kz,kg} two different dominant complex pairs.

The eigenstructure of the system indicates that rather than representing a

pailring of distinct modes, one from each of the two steam generators, this
symmetry represents the pairing of coupled and decoupled modes. For example,
the frequency pair -0.15+ jO0.15 may be associated with decoupled synchronous
mechanical rotation of the two generator shafts, while the pair -0.06+j2.0
may be associated with inversely coupled mechanical rotation of the two
shafts, If the initial frequency deviations in the two areas were equal

then the response would be well damped, while if the initial frequency
deviation in one area were the negative of that in the other area, the
response would be slow and highly oscillatory.

It may be shown that the closed loop system possesses the same
eigenstructure symmetry as the open loop system provided the linear quadratic
regulator problem is defined such that the states of the generators are
weighted equally: Q=4dg(Q',q,Q'). The resultant closed loop matrix has the

symmetric form
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o T T ?
F= a, 0 -a, (4.4.6) :
F2 f1 F ?
]
and the closed loop eigenvectors and eigenvalues are given by:
- d1
v

d,5 d,5 i d d d
VN v alog],  (FpE] = Al |
i=1 i=1 v :
. :
Cc- (4.4.7) :
v [ [
2,6 c.b c 1 c . Vi i
{Ai} o {?‘i} o ‘Vi =leg |, QI-F+Fif)) |- ==l =0 .j
i=1 i=1 (4 a ‘
.-.Vi 1 :

Therefore all the remarks made regarding the open loop transient response
apply also to the closed loop response.

A linear quadratic regulator problem may now be defined by
letting Q= dg(5,0,0,0,30,10,5,0,0,0,30), R= szz‘ The solution to the
Riccati equation is given in Table 4.4.4, and the optimal closed loop eigen-
vectors are given in Table 4.4.5. Referring to Figure 4.4.1, the optimal
solution has increased the damping of the two complex pairs associated with
coupled and decoupled mechanical rotation of the generator shafts. The real
eigenvalue associated with the tie-line interaction has increased in magni-
tude: Ag='-0.220. The remaining spectrum consists of three pairs of real
eigenvalues at ~2,-5,-9 corresponding to coupled and uncoupled modes. It is
noted that the closed loop eigenvectors1r§3ﬁg (Table 4.4.5) corresponding
to the real eigenvalues at -5 are nearly equal to the eigenvectors V;,Vi
(Table 4.4.3) corresponding to the two open lcop eigenvalues near -5.

Since the optimal control has expanded no energy shaping these two eigen-

vectors it is concluded that these two modes might be neglected in designing

an output feedback compensator.
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Table 4.4.4. Optimal state feedback regulator solution

With Q=4dg{(5,0,0,0,30,10,5,0,0,0,30) and R= I7x2 the solution of

the Riccati equation and the associated feedback matrix are:

Moo 4, k, -0.8761 k,
M = m2 16.9456 -m2 K=
K 0.8761 k
M, oy Y, 2 1
where:
C 0.4627 0.0292 0.1811  0.0719 4.38027
0.0292 0.0600 0.3147  0.1426 10.3402
M = | 0.1811 0.3147 6.2726  0.5895 6.1776
0.0719 0.1426 0.5895  0.3795 23.7609
| 4.3802 10.3403 6.1773 23.7608  2478.8810 ]
F-0.0112 -0.0222 -0.0439 -0.0626 -4.01687
-0.0222 -0.0458 -0.0492 -0.1233 -9.2460
My= | -0.0439 -0.0492 -0.9310 -0.2711 11.1443
-0.0626 -0.1233 -0.2711 -0.3484  -21.9648
| -4.0170 -9.2462 11.1440 -21.9648 -2367.8620 ]

m, = [-0.2190 -0.2945 -3.9340 -1.2252 25.3958]
0.2190
0.2945
= 3.9342
E 1.2252
-25.3955

k1= [ 1.8507 0.1169 0.7244 0.2875 17.5206]

k2= [-0.0449 -0.0889 -0.1755 -0.2502 -16.0673]
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Table 4.4.5.

See Table 4.4.2 for the definition of the eigenvalues )\c,)\d.

C
vy
vectors have the form: V§= oy
Cc
vy
. 0.4676 ] -0.00087]
-0.5326 -0.7063
0.0099 0.0244
-0.0027 -0.0163
0.0014 | 0.0031]
v]=|-0.0067 | ¥7=1-0.02791 ¥, =
~0.4653 0.0008
0.5300 0.7062
-0.0098 -0.0244
0.0027 0.0163
| -0.0014_ | -0.0031 |
[-0.1394] (-0.4642
-0.1385 0.5285
0.4318 -0.0098
0.4852 0.0027
e« |=0.0014 | .| 0.0014{ .
Ve= —0.2813 | v{=|0-0000| 7, =
0.1394 T0.4689
0.1385 0.5340
-0.4318 -0.0099
-0.4852 0.0028
| 0.0014 L-0.0015 |
~ 0.18857 [ 0.12557
0.1877 0.1198
0.1995 -0.3451
0.1985 -0.3874
-0.2225 -0.0358
%, 14 =| 0.0000 |+ | 70.0000
0.1885 0.1255
0.1877 0.1198
0.1995 -0.3451
0.1985 -0.3874
| -0.2225] 1-0.0358.

0.0219
~0.0020
~0.6993

-0.1429

~0.0219
0.0020
0.6993
| -0.0064

[ -0.0018
-0.7066
0.0244
-0.0164
0.0036
~0.0000 |
=0.0013 |
-0.7064
0.0244
-0.0163

[ 0.0139

0.0064

-0.0139

| 0.0036 |

S0

w o

N

Optimal eigenvectors of state feedback regulator solution

M The eigen-
[ 0.41757 [ 0.08207
0.3858 -0.0757
-0.0077 -0.0328
-0.0225 -0.0124
-0.0248 0.0039
g =|_0.1580 |+j| 0.5468
T0.4175| | -0.0820
-0.3858 0.0757
0.0077 0.0328
0.0225 0.0124
[ 0.02481 | -0.0039.
[-0.0034 7
-0.0053
0.0005
-0.7070
0.0132
=0.0034
-0.0053
0.0005
-0.7070
_ 0.0132J




Open loop eigenva lues

a2
-r.l
8 : ; 8 —
-5 -4 -3 8 1 ©
4+
A2
Optimal closed loop eigenvalues
at2
T1
— b —f—a— &
_9 "5 '3 '2 -1 '
Tl |
a Coupled Modes 1
o Decoupled Modes al .2
FP-6538

Figure 4.4.1. Open and closed loop spectra of

the power system model
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To apply the design methodology a permitation of states x=Tx is

introduced where

00001000000
00000100000
00000000001
10000000000
01000000000
T=|1]00100000000]. (4.4.8)
00010000000
00000010000
00000001000
00000000100
00000000010

In this basis the observation matrix has the form (I3x310) and the state
5% 23112512522 % 3% 0 %72 %0 %9 X)) -

At the first stage of the design it is necessary to select three
eigenvectors such that Y-l exists, where the ith column of Y consists of
the 5th, 6th, and 11lth entries of the corresponding selected eigenvector.
In view of the above discussion of the closed loop eigenstructure, it
follows that the columns of Y have the form (B,O,B)T if a decoupled eigen-
value is selected, and (B,Y,—B)T if a coupled eigenvalue is selected. Thus,
for Y to be invertible, Ar must contain exactly one decoupled eigenvalue and
two coupled eigenvalues. In particular, the selection of the three dominant

coupled eigenvalues A is not possible.

Asidg
Subject to complex pairing there are 21 possible choices for Ar’

of which four give a stable spectrum for Alz (A; Az) (AZ,A A ),

(A A ) (Aa S’A ). For each of these choices however, the spectrum of

49 5,
Al contains at least one eigenvalue with real part to the right of o=-0.060.
Since the spectrum of the open loop system lies to the lect of the line
o=-0.060, a static output feedback design is not acceptable and a dynamic

compensator will be designed.
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To solve the pole-placemenf problem of the second stage of the
design, Ar must be selected and the remaining optimal eigenvalues ordered.
Because of the nature of the tie-line equation the second row of A12 is all

zeros and it is necessary to introduce

0

100 9

T -[ } , TA,. = , ¢, = [0.035 0.02333 0.025 0].  (4.49)

001 127 . 1
1

Then 2=2 and at the ith stage of the algorithm only i+£-1= i+l eigenvalues

141 It is assumed that the dimension of the desired

compensator may not exceed four. At first designs based on stable matrices

may be assigned to A

A1 are discussed and then, as these will prove unsatisfactory, designs based
on unstable matrices A1 will be investigated.

Consider first the four choices of Ar which give rise to a stable
matrix Al. As the optimal control expended little energy shaping the
eigenvectorsw'g,Wg the two choices (A;,kg,kg),(xg,xg,kg) will not be pursued
here. The other two choices (AZ,A;, Z,A;,Ag) retain the dominant

coupled frequency pair and since compensator designs based on the first

d
230, (A

choice were unsuccessful, only the latter will be considered here.

Let Ar-=dg(xg,kz,kg). Based on a desire to retain the dominant
eigenvalues, the pole-~placement problem is solved for the ordering
Ag,kg,kz,kg. All calculations are performed using Procedure 1, and the
data are given in Table 4.4.6. In the following discussion eigenvalues
without superscripts refer to spectra in Table 4.4.6. At the first stage
of the algorithm a complex pair is placed at -0.1+ 3j0.1 in the expectation
of removing the two small eigenvalues A7,A8. Unfortunately the resultant
spectrum of AZ still contains a small eigenvalue Aat--0.060. The compen-

sator based on this solution is (DO,Kz have been scaled)

j — 1

e teed beed i b
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Table 4.4
d ,¢c ,c ,c ¢
Aysdysdgadgads
[-2.0000 0.1961 0.1830
1 _| 4.7500 -2.3665 2.4576
4 0.0000 0.0833 =-0.2445
1 2 | 0.0000 0.0473 2.0441
N
Ai Ai 0.0000 -0.1838 -0.1715
A2 o | 0.0000 2.2413  2.0916
1 0.0000 -0.0851 -0.0794
| 0.09%00 0.0655 0.0612
~ -7.8452 0.2596 7.34877] -0.2336
-105.3412 -0.0249 -89.6134 -0.1529
3.3363 -0.0595 3.4031 0.4484
N -1.8903 -0.0280 -2.6205 | o _| 0.4941
o 7.3517 -0.2596 -7.8421 o 0.2336
~-89.6515 0.0249 -105.3800 0.1540
3.4045 0.0595 3.3377 ~-0.4484
. -2.6216 0.0280 -1.8914 | -0.4940
0.7072 _
£, = [1.0000] f£, E).7o7o g, = [3914.940 3918.
gz-[1014.327 1017.
The spectrum of A1 is: The spectrum of A2 is:
1. (-5.174, 0.000) 1. (-5.193, 0.000)
2. (-2.101, 0.000) 2. (-2.102, 0.000)
3. (-1.922, 0.000) 3. (-1.921, 0.000)
4. (~1.799, 0.306) 4. (-1.780, 0.315)
5. (~1.799, -0.306) 5. (-1.780, -0.315)
6. (-0.230, 0.000) 6. (-0.112, 0.104)
7. (-0.039, 0.000) 7. (-0.112, -0.104)
8. (-0.024, 0.000) 8. (-0.060, 0.000)

.6. Data for pole-placement problem based on the ordering:

0.2746]

3.6869
-0.1168
-1.9338_]

-0.2573
3.1378

-0.1192
0.0918_

0.14841
0.1192
-0.0101
-0.7080
-0.1484
-0.1192

0.0101

0.7080

477]

972}

The spec

W~V WN -

(-5
(-2
(-1
(-1
(-1
(-0
(-0
(-0

trum of A, is:

3

197, 0.000)
102, 0.000)
921, 0.000)
741, 0.297)
741, -0.297)
152, 0.153)
152, -0.153)
037, 0.000)
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Hy = [~0.1904] D, = [-182.623, 0.00297, 182.634]
< '[-762.3500 ~0.4577 -764.9227] . =[ 20.0423 (4.4.10)
y ~L 760.9804 0.4577 763.5529] Xz = [-20.0423] -

Continuing the solution of the pole-placement problem because of the

8’ f2 is chosen at the second

uncontrollable and a complex pair is placed at 0.13+ j0.13.

large gains in Ky and the small eigenvalue A
stage to render A3

The compensator based on this solution is (DO,Kz have been scaled)
H s[-0.2322 0.0632:] D = -214.281 0.005176 —214.298]
0 L-0.0567 -1.9364 0 -18.645 0.002220 -18.605 ]

(4.4.11)

g =| -841.9190  -0.4577 -844.7776| . g[ 20.131 -9.015]
840.5499  0.4577 843.4084) "z [-20.131 9.015 |

G(HO) = (~1.934, -0.234).

The degree of stability of Ar has decreased: A8==—0.037, and the gains Ky
have increased.

Attempts at continuing the solution of the pole-~placement problem
to increase the degree of stability of the closed loop system and reduce
the feedback gains were unsuccessful. Therefore, a different ordering for

Ar’Ap was considered. Since the major objection to the design above is the

poor stability margin, and based on the suspicion that the small real pole

c
6

The remaining two eigenvalues

in o(Al) is due to the tie-line interaction mode A, departing from its

optimal location, Ar is selected to retain Ag.
are chosen based on the expectation that if the spectrum of Al contains a
complex pair near +J2 then this will correspond to a departure of the
frequency pair XZ,Ag from their optimal locations. Based on physical
considerations it should then be relatively easy to shape the real part of

this complex pair, though the complex part should be insensitive to feedback.

& -

-
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From an inspection of the spectra of the 21 possible matrices A

1
(this data is not reported here), the choice Ar=-dg(kg,kg,xg) was made.
The ordering for the pole-placement problem is taken to be A:,A;,Az,kg.

The pole-placement problem is solved using Procedure 1 at each stage and
the data are given in Table 4.4.7. In the following discussion eigenvalues
without superscripts refer to spectra in Table 4.4.7. At the first stage a
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chosen to render Al uncontrollable and a complex pair is again placed at

c
A:,ls- At the third stage f

complex pair is placed at the location of Az, A;. At the second stage £

3 is chosen to render uncontrollable the complex
pair just assigned and then eigenvalues are placed at -2,-5. At the last
stage f4 is chosen to render A4,A7,A8 uncontrollable and a complex pair is
placed at -3+ 3j2.

Three compensators are defined by this solution to the pole-

placement problem. Based on the first stage of the solution (Do,kz have

been scaled)

Ho = [-56.960] D0 = (50.941 -0.239 -63.913)
« _[—608.8379 C.2478 755.8289:| < -[56.57] (4.4.12)
-638.6288 -0.2479 791.7451 z L58.91]°
Based on two stages of the solution (DO’Kz have been scaled)
H _[—6.960 16.116] D -[50.93:3 -0.239 -63.905]
0 o -9.171 0 0 0 0 (4.4.13)

K = -608.7381 0.2478 755.7395 K = 56.57 -273.27}
y L-638.5250 -0.2479 791.6521 z |.58.91 -115.18]°

Based on the complete solution (DO,Kz have been scaled)

pre—.

e e vl e o B
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Table 4.4.7. Data for pole-placement problem

d,xc AC Ad AC Ad xd

Agshgsdgsryadysd sis

Ai’

[ -5.1168 -0.5450 4.8607 ]
-4.,4470 -0.5345 4.0414

19.0616 1.7236 -19.0248
N = -66.5339 1.3320 12.8315 B =
o 4.8610 0.5450 -5.1170 0
4,0418 0.5345 -4.4473
-19.0253 -1.7236 19.0622

| 12.8455 -1.3308 -66.5481 _

- _[-1.0000
£y = [1.0000] ) [ 0.0004
g, = [745.263 -925.893]

0.2210

01526 8.9730

£ = 41.1179
47| 0.7809

0. 5640 84.3020

21.5255

8, = [38.169 -48.298]

Al Az 2.0000 0.1279 0.1194 0.17917
=[ 1 1] al-| 4.7500 -4.8888 0.1037  0.1556
& 2 1 1 0.0000 -0.3099 -0.6114 -0.6672
1 1 0.0000 1.6633 3.5522 0.3287.

0.0000 -0.1215 -0.1134 -0.1701
0.0000 -0.1010 -0.0943 -0.1415
0.0000 0.4756 0.4439 0.6659
0.0000 -0.3211 -0.2997 -0.4496_|

0.4571
-0.5199
0.0104
0.0728
0.4765
-0,5412

0.0091
| 0.0776

]

8, = [0.122 -0.109]

0.0000
0.0000
0.0000
0.0000

based on the ordering:

-0.9954"
f,=| 0.0628

g3 = [748.068 -929.488]

-105.4287

-0.4775 =-0.1525 0.0870 1
0.5240 -0.1311 0.0583
0.0315 0.2584 0.3075

-0.1166 5.9765 =10.3782
0.4759 =-0.1525 0.0870

-0.5222 -0,1311 0.0583

-0.0315 0.2584 0.3075

0.1164 5 T765 -10.3783

0.0728 -

-11.2749
-50.9564

-27.2383
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Table 4.4.7. continued

The spectrum of A1 is: The spectrum of A2 is:
1. (~5.090, 0.000) 1. (-5.079, 0.000)
2. (-5.000, 0.000) 2. (~1.979, 0.000)
3. (-1.999, 0.000) 3. (~1.203, 2.501)
4., (-1.978, 0.000) 4. (-1.203, -2.501)
5. (-0.167, 0.000) 5. (-1.093, 0.196)
6. (-0.112, 0.000) 6. (-1.093, -0.196)
7. ( 0.002, 2.026) 7. (-0.241, 1.943)

\ 8. ( 0.002, -2.026) 8. (-0.241, -1.943)

o The spectrum of A3 is: The spectrum of A, is:
1. (-5.079, 0.000) 1. (-5.000, 0.000)

* 2. (-1.979, 0.000) 2. (-3.224, 2.336)

' 3. (-1.203, 2.501) 3. (-3.224, -2.336)

IS 4. (-1.203, -2.501) 4, (-2.001, 0.000)

: 5. (-1.093, 0.196) 5. (-1.884, 0.000)

: 6. (-1.093, -0.196) 6. (-0.304, 0.000)
7. (-0.241, 1.943) 7. (-0.241, 1.943)
8. (-0.241, -1.943) 8. (-0.241, -1.943)

) . The spectrum of A_ is:

]
1. (-4.999, 0.000)
2. (-3.000, 2.000)
3. (-3.000, -2.000)
4, (-2.001, 0.000)
5. (-1.842, 0.000)
6. (-0.546, 0.000)
7. (-0.214, 1.943)
8. (-0.241, -1.943)
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[-9.1432  0.2209 1.7208 -3.2424 7.3655 0.0949 -£.994
g =| 0-1214 -8.1721  7.3545 -13.8580| ., _|33.439 0.4032 -40.400
0 |-0.0662 -0.3129 -4.5239  8.2957 0 |-7.968 0.8692 11.217 :
| -0.0142 -0.0517 -1.0476  1.6279 -0.837 0.236 1.741] 1
K _[ 22.6798 0.2478 -28.5104] K =[zaa.zm -7.668  5.957 —10.206] |
y L-50.4229 -0.2479 61.0083 z | 8.334 6.804 -11.387 22.475
(4.4.14) 1

The first order compensator gives a nice total closed loop spectrum
but has the same disadvantage encountered before of large feedback gains.
The second order compensator has no apparent advantage over the first beyond

the retention of the optimal pair (A;,Vﬁ). The fourth order compensator

however has nice properties. It requires gains no larger than 60 as compared

Furthermore it retains a seven

dimensional optimal invariant subspace corresponding to (X;,kg,kg,kg, g,xi,xg)

The spectrum of

to 20 for the full state feedback solution.
and the spectrum of Ar contains eigenvalues near A;,AZ,A;.
the resultant closed loop system is given in Table 4.4.8 and Figure 4.4.2.
The compensator is also open loop stable.

In summary if large feedback gains are tolerable then the first
order compensator defined in (4.4.12) is satisfactory, however, if it is
desired to reduce the magnitude of the feedback gains then the dimension of
the compensator must be increased. The fourth order controller defined by
(4.4.14) is one possibility and its degree compares favorably with that of
the Luenberger reduced order observer (n-r =8). It is noted that there are
The

many other possibilities for designing satisfactory controllers.

analysis presented here has only served to illustrate the design methodology.

e,
AR T

4}
.’
t
< 3
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Table 4.4.8. Spectra of closed loop system under dynamic compensation

For the compensator
given in (4.4.12)

For the compensator
given in (4.4.14)

1. (-9.171, 0.000)
2. (-5.079, 0.000)
3. (-2.001, 0.000)
4. (-1.994, 0.000)
5. (-1.979, 0.000)
6. (-1.203, 2.501)
7. (-1.203, -2.501)
8. (-1.093, 0.196)
9. (-1.093, -0.196)
10. (-0.241, 1.943)
11. (-0.241, -1.943)
12. (-0.220, 0.000)

The spectrum of Ac is:

The spectrum of Ac is:

1. (~9.171,
2. (-9.171,
3. (=4.999,
4. (-3.000,
5. (-3.000,
6. (-2.001,
7. (-2.001,
8. (-1.994,
9. (-1.842,
10. (-0.546,
11. (-0.241,
12. (-0.241,
13. (-0.220,
14. (-0.171,
15. (-0.171,

0.000)
0.000)
0.000)
2.000)
-2.000)
0.000)
-0.000)
0.000)
0.000)
0.000)
1.943)
-1.943)
0.000)
0.093)
-0.093)

0
1. (-6.960, 0.000)

The spectrum of H, is:

The spectrum of H_ is:

1. (-9.170,
2. (-7.841,
3. (-2.644,
4. (-0.557,

0

0.000)
0.000)
0.000)
0.000)
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Figure 4.4.2. Closed loop spectrum using the compensator given in (4.4.14)
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CONCLUSIONS

A design oriented methodology for the construction of suboptimal
linear quadratic regulators has been presented. A design criterion has
been taken to be the retention of as many optimal eigenvectors as possible
from a reference state feedback regulator. This gives rise to an associated
output feedback pole-placement problem both in designs using static and
dynamic compensation. For the latter case an algorithm has been given which
solves this pole-placement problem, implicitly fixing the parameters of the
controller, and determining its dimension without a priori assumptions. It
has also been shown that the methodology may be extended to the class of
stabilizableksystems. Finally the design methodology has been illustrated

with three nontrivial examples.




130 |

REFERENCES

.

1, J. Medanic, '"Design of Low Order Optimal Dynamic Regulators for Linear .
Time-Invariant Systems," 1979 Conference on Information Theory and {
Systems, Johns Hopkins University,March 1979 (Submitted for publication).

2. N. Munro and S. Novin-Hirbod, "Pole Assignment Using Full-Rank Output-
Feedback Compensators," Int. J. Systems Sci., Vol. 10, No. 3, March
1979, pp. 285-306.

Lk s, B

3. W. M, Wonham, "On Pole Assignment in Multi-Input Controllable Linear
Systems," IEEE Trans. on AC, Vol. AC-12, No. 6, Dec. 1967, pp. 660~665.

i

. 4, E. J. Davison, "On Pole Assignment in Linear Systems with Incomplete s
B State Feedback," IEEE Trans. on AC, Vol. AC-15, No. 3, June 1970,
N pp. 348-351. -]

5 5. E. J. Davison and S. H. Wang, '"On Pole Assignment in Linear Multi-
| < variable Systems Using Qutput Feedback,' IEEE Trans. on AC, Vol. AC-20, -
No. 4, Aug. 1975, pp. 516-518.

3 6. A. Jameson, "Design of a Single-Input System for Specified Roots
¢ Using Output Feedback,' IEEE Trans. on AC, Vol. AC-15, No. 3, June 1970, ;
[ - pPp. 345-348. -

7. T. Topaloglu and D, E. Seborg, '"A Design Procedure for Pole Assignment -
Using Output Feedback," Int., J. Control, Vol., 22, No. 6, 1975, pp. 741l-
748,

8. C. T. Chen and C. H, Hsu, "Design of Dynmamic Compensators for Multi- i
variable Systems," 1971 JACC, Paper no. 8-E1 (Unpublished), =

2 9. F, Fallside and H. Seraji, "Design of Multivariable Systems Using
Unity-Rank Feedback," Int. J. Control, Vol, 17, No. 2, 1973, pp. 351- e
364,

10. H, Seraji, "Restrictions on Attainable Poles and Methods for Pole
Assignment with Output Feedback," Proc. IEE, Vol., 121, No. 3, March
1974, pp. 205-212, -

11. H. Seraji, "A New Method for Pole Assignment Using Qutput Feedback," -
Int. J. Control, Vol,., 28, No. 1, 1978, pp. 147-155.

12, H. Kimura, "Pole Assignment by Gain Qutput Feedback," IEEE Trans. on -
AC, Vol, AC-20, No. 4, Aug. 1975, pp. 509-516.

13. H. Kimura, "A Further Result on the Problem of Pole Assignment by
Output Feedback,' IEEE Trans, on AC, Vol. AC-22, No. 3, June 1977, i
ppP. 458-463, I




15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

A, Bradshaw and B. Porter, '"'Design of Linear Multivariable Discrete-
Time Qutput-Feedback Regulators," Int. J. Systems Sci., Vol. 9,
No. 8, 1978, pp. 857-863.

A. I. Vardulakis, "Generalized Root Locus Assignment of all Poles of a
Multivariable System by Output Feedback," Int., J. Control, Vol, 23,
No. 1, 1976, pp. 39-47.

A. G. J. MacFarlane, B. Kouvaritakis, and J. M. Edmunds, "Complex
Variable Methods for Multivariable Feedback System Analysis and Design,'
in Alternates for Linmear Multivariable Control, edited by M. Sain,

J. Pechzkoraski, and J., Melsa, National Engineering Consortium, Inc.,
Chicago, 1978.

B. Kouvartakis, "Optimal Root Loci of Linear Multivariable Systems,"
Int. J. Control, Vol. 28, No., 1, 1978, pp. 33-62.

N. Munro and A. Vardulakis, "Pole Shifting Using Output Feedback,'
Int. J. Control, Vol, 18, No. 6, 1973, pp. 1267-1273.

N. Munro, "Further Results on Pole-Shifting Using Qutput Feedback,"
Int, J. Control, Vol. 20, No. 5, 1974, pp. 775-786.

H. M. Power, '"Dyadic OQutput Feedback Laws Generated as Kronecker
Products: Optimal and Suboptimal Solutioms," Int, J. Control, Vol. 23,
NO. 6’ 1976, pp. 785-798.

Y. Bar-Ness, "Optimal Closed-Loop Poles Assignment," Int., J. Control,
Vol., 27, Yo. 3, 1978, pp. 421-430,

B. Sridhar and D. P, Lindorff, "Pole-Placement with Constant Gain
Qutput Feedback," Int. J. Control, Vol. 18, No. 5, 1973, pp. 993-1003.

H. R. Sirisena and S. S. Choi, "Pole-Placement in Prescribed Regions of
the Complex Plane Using Qutput Feedback,'" IEEE Trans. on AC, Vol. AC-20,
No. 6, Dec. 1975, pp. 810-812,

L. F. Miller, R. G. Cochran, and J. W. Howze, "Qutput Feedback
Stabilization by Minimization of a Spectral Radius Function," Int. J.
Control, Vol. 27, No. 3, 1978, pp. 455-462.

W. S. Levine and M, Athans, '"On the Determination of the Optimal
Constant Qutput Feedback Gains for Linear Multivariable Systems,'
IEEE Trans. on AC, Vol., AC-15, No. 1, Feb. 1970, pp. 44-48,

W. M. Wonham, Linear Multivariable Control, A Geometric Approach,
Berlin, Springer Verlag, 1974.




27.

28.

29.

30‘

31.

32.

33.

34.

35.

36.

37.

132

E. J. Davison and S. H. Wang, "Properties of Linear Time-Invariant
Multivariable System Subject to Arbitrary Qutput and State Feedback,"
IEEE Trans. on AC, Vol. AC-18, No. 1, Feb. 1973, pp. 24-32,

D. Q. Mayne and P. Murcoch, "Modal Control of Linear Time Invariant
Systems," Int. J. Control, Vol. ll, No. 2, 1970, pp. 223-227.

K. Martensson, '"On the Matrix Ricatti Equation," Information Sciences,
Vol. 3, Jan. 1971, pp. 17-49.

H. P. Horisberger and P. R. Belanger, "Solution of the Optimal Constant
Qutput Feedback Problem by Conjugate Gradients,'" IEEE Trans, on AC,
Vol. AC-19, No. 4, Aug. 1974, pp. 434-435.

J. Medanic, "On Stabilization and Optimization by Qutput Feedback,"
Twelfth Asilomar Conference on Circuits, Systems, and Computers,
Nov. 1978 (Submitted for publication).

A, Ben-Israel and T. N. E. Greville, Generalized Inverses, New York,
John Wiley & Sons, 1974,

D. G. Luenberger, "An Introduction to Observers," IEEE Trans. on AC,
Vol. AC-16, No. 6, Dec. 1971, pp. 596-602,

G. E. Forsythe, M. A. Malcolm and C. B. Moler, Computer Methods for
Mathematical Computations, Prentice-Hall, 1977.

D. E. McBrinn and R. J. Roy, "Stabilization of Linear Multivariable
Systems by Qutput Feedback," IEEE Trans. on AC, Vol. 17, No. 2, April
1972, pp. 243-245,

D. K. Lindner, "Zeros of Multivariable Systems: Definitions and
Algorithms," Report DC-23, Coordinated Science Laboratory, University
of Illinois, Urbana, Illinois, May 1979,

M, Calovic, "Dynamic State-Space Models of Electric Power Systems,"
Dept. of Electrical Engr., University of Illinois, Urbana, 1971.

-
]




